Home
Class 12
MATHS
Given f(x) where ={(x|x|,"for" xle -...

Given f(x) where
`={(x|x|,"for" xle -1),([x+1]+[1-x],"for"-1lt x lt 1 ","),(-x|x|,"for" xge1):}` [.] denotes the greatest integer function. If `I= int_(-2)^(2) f ( x) dx`,then |3I| =

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem, we need to evaluate the integral \( I = \int_{-2}^{2} f(x) \, dx \) where the function \( f(x) \) is defined piecewise. We will break it down into three parts based on the intervals provided. ### Step 1: Define the Function The function \( f(x) \) is defined as follows: - For \( x \leq -1 \): \( f(x) = x |x| = x^2 \) (since \( |x| = -x \)) - For \( -1 < x < 1 \): \( f(x) = [x + 1] + [1 - x] \) - For \( x \geq 1 \): \( f(x) = -x |x| = -x^2 \) ### Step 2: Break Down the Integral We can split the integral into three parts according to the definition of \( f(x) \): \[ I = \int_{-2}^{-1} f(x) \, dx + \int_{-1}^{1} f(x) \, dx + \int_{1}^{2} f(x) \, dx \] ### Step 3: Evaluate Each Integral #### Part 1: \( \int_{-2}^{-1} f(x) \, dx \) For \( x \leq -1 \), \( f(x) = x^2 \): \[ \int_{-2}^{-1} x^2 \, dx = \left[ \frac{x^3}{3} \right]_{-2}^{-1} = \left( \frac{(-1)^3}{3} - \frac{(-2)^3}{3} \right) = \left( -\frac{1}{3} + \frac{8}{3} \right) = \frac{7}{3} \] #### Part 2: \( \int_{-1}^{1} f(x) \, dx \) For \( -1 < x < 1 \), we need to evaluate \( f(x) = [x + 1] + [1 - x] \): - For \( -1 < x < 0 \): \( [x + 1] = 0 \) and \( [1 - x] = 1 \) → \( f(x) = 0 + 1 = 1 \) - For \( 0 < x < 1 \): \( [x + 1] = 1 \) and \( [1 - x] = 1 \) → \( f(x) = 1 + 1 = 2 \) Thus, we can break this integral into two parts: \[ \int_{-1}^{0} 1 \, dx + \int_{0}^{1} 2 \, dx = [x]_{-1}^{0} + [2x]_{0}^{1} = (0 - (-1)) + (2 \cdot 1 - 0) = 1 + 2 = 3 \] #### Part 3: \( \int_{1}^{2} f(x) \, dx \) For \( x \geq 1 \), \( f(x) = -x^2 \): \[ \int_{1}^{2} -x^2 \, dx = -\left[ \frac{x^3}{3} \right]_{1}^{2} = -\left( \frac{2^3}{3} - \frac{1^3}{3} \right) = -\left( \frac{8}{3} - \frac{1}{3} \right) = -\left( \frac{7}{3} \right) = -\frac{7}{3} \] ### Step 4: Combine the Results Now, we can combine the results from all three parts: \[ I = \frac{7}{3} + 3 - \frac{7}{3} = 3 \] ### Step 5: Calculate \( |3I| \) Finally, we need to find \( |3I| \): \[ |3I| = |3 \cdot 3| = |9| = 9 \] ### Final Answer Thus, the final answer is: \[ \boxed{9} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If [.] denotes the greatest integer function, then f(x)=[x]+[x+(1)/(2)]

If f(x)=([x])/(|x|), x ne 0 , where [.] denotes the greatest integer function, then f'(1) is

If f(x)=([x])/(|x|),x ne 0 where [.] denotes the greatest integer function, then f'(1) is

int_(-1)^(41//2)e^(2x-[2x])dx , where [*] denotes the greatest integer function.

f(x)= cosec^(-1)[1+sin^(2)x] , where [*] denotes the greatest integer function.

Let f(x) = [x]^(2) + [x+1] - 3 , where [.] denotes the greatest integer function. Then

f(x)=1/sqrt([x]^(2)-[x]-6) , where [*] denotes the greatest integer function.

If f(x) = {{:("sin"(pix)/(2)",",x lt 1),([x]",",x ge 1):} , where [x] denotes the greatest integer function, then

Let f(x) = 1 + |x|,x = -1, where [*] denotes the greatest integer function.Then f { f (- 2.3)} is equal to

Let f(x)=sec^(-1)[1+cos^(2)x], where [.] denotes the greatest integer function. Then the