Home
Class 12
MATHS
underset(nrarroo)(lim)(3.2^(n+1)-4.5^(n+...

`underset(nrarroo)(lim)(3.2^(n+1)-4.5^(n+1))/(5.2^(n)+7.5^(n))=`

A

`3/5`

B

`-(4)/(7)`

C

`-(20)/(7)`

D

0

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(nrarroo) (3.2^(n+1)-4.5^(n+1))/(5.2^(n)+7.5^(n))=

Evaluate underset(nrarroo)(lim)sum_(k=1)^(n)(1)/(2^(k)) and

underset(nrarroo)lim[(n+1)/(n^(2)+1^(2))+(n+2)/(n^(2)+2^(2))+(n+3)/(n^(2)+3^(2))+...+(1)/(n)]

underset(nrarroo)lim[(1)/(sqrt(n^(2)-1^(2)))+(1)/(sqrt(n^(2)-2^(2)))+(1)/(sqrt(n^(2)-3^(2)))+...+(1)/(sqrt(n^(2)-(n-1)^(2)))]

underset(nrarroo)lim[(1)/(sqrtn)+(1)/(sqrt(2n))+(1)/(sqrt(3n))+...+(1)/(n)]

Value of underset(ntoinfty)(lim)((n+1)^(1//3)+(n+2)^(1//3)+…+(2n)^(1//3))/(n^(4//3)) is equal to

Simplify : (5^(n+3)-6xx5^(n+1))/(9xx5^(n)-5^(n)xx2^(2))

Simplify : (5^(n+3)-6xx5^(n+1))/(9xx5^(n)-5^(n)xx2^(2))

If lim_(nrarroo) (n.2^(n))/(n(3x-4)^(n)+n.2^(n+1)+2^(n))=1/2 where "n" epsilonN then the number of integers in the range of x is (a) 0 (b) 2 (c) 3 (d) 1

Simplify : (5^(n+4)-6xx5^(n+2))/(9xx5^(n+1)-5^(n+1)xx4)