Home
Class 12
MATHS
If y=Acos(logx)+B sin(logx) then prove t...

If `y=Acos(logx)+B sin(logx)` then prove that `x^(2)(d^(2)y)/(dx^(2))+x(dy)/(dx)+y=0`.

A

y

B

`-y`

C

2y

D

`-2y`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

If y="sin"(logx), then prove that (x^2d^2y)/(dx^2)+x(dy)/(dx)+y=0

If y=Acos(logx)+\ Bsin(logx) , prove that x^2\ (d^2y)/(dx^2)+x(dy)/(dx)+y=0 .

If y=sin(logx) , prove that x^2(d^2y)/(dx^2)+x(dy)/(dx)+y=0 .

If y=acos(logx)+bsin(logx), prove that x^2(d^2y)/(dx^2)+\ x(dy)/(dx)+y=0

If y=3cos(logx)+4sin(logx),\ then show that x^2(d^2\ y)/(dx^2)+x(dy)/(dx)+y=0

(i) If y=asin(log x) then prove that x^(2)*(d^2y)/(dx^2)+x(dy)/(dx)+y=0 . (ii) If y=acos(log_(e)x)+bsin(log_(e)x) , then prove that x^2*(d^2y)/(dx^2)+x*dy/dx+y=0 .

If y=(sin^(-1)x)^2 then prove that (1-x^(2))(d^2y)/(dx^2)-x(dy)/(dx)-2=0 .

If y= cot x, prove that (d^(2)y)/(dx^(2)) + 2y (dy)/(dx)= 0.

If x=sint,y=sinpt , prove that (1-x^2)(d^2y)/(dx^2)-x(dy)/(dx)+p^2 y=0 .

If y=e^m\ sin^((-1)x) , prove that (1-x^2)(d^2y)/(dx^2)-x(dy)/(dx)-m^2y=0 .