Home
Class 12
MATHS
If the maximum and minimum values of the...

If the maximum and minimum values of the determinant
`|(1+sin^(2)x,cos^(2)x,sin2x),(sin^(2)x,1+cos^(2)x,sin2x),(sin^(2)x,cos^(2)x,1+sin2x)|` are `alpha` and `beta` respectively, then `alpha+2beta` is equal to

Text Solution

AI Generated Solution

The correct Answer is:
To solve the determinant \[ D = \begin{vmatrix} 1 + \sin^2 x & \cos^2 x & \sin 2x \\ \sin^2 x & 1 + \cos^2 x & \sin 2x \\ \sin^2 x & \cos^2 x & 1 + \sin 2x \end{vmatrix} \] we will simplify it step by step. ### Step 1: Simplify the determinant We can first observe that: \[ 1 + \sin^2 x = 1 + \sin^2 x, \quad 1 + \cos^2 x = 1 + \cos^2 x, \quad 1 + \sin 2x = 1 + \sin 2x \] Now we can apply the column operation \(C_1 \to C_1 + C_2\): \[ D = \begin{vmatrix} 1 + \sin^2 x + \cos^2 x & \cos^2 x & \sin 2x \\ \sin^2 x + 1 + \cos^2 x & 1 + \cos^2 x & \sin 2x \\ \sin^2 x + \cos^2 x & \cos^2 x & 1 + \sin 2x \end{vmatrix} \] Using the identity \(\sin^2 x + \cos^2 x = 1\), we can simplify: \[ D = \begin{vmatrix} 2 & \cos^2 x & \sin 2x \\ 2 & 1 + \cos^2 x & \sin 2x \\ 1 & \cos^2 x & 1 + \sin 2x \end{vmatrix} \] ### Step 2: Row operations Now, we will perform the row operation \(R_2 \to R_2 - R_1\) and \(R_3 \to R_3 - \frac{1}{2} R_1\): \[ D = \begin{vmatrix} 2 & \cos^2 x & \sin 2x \\ 0 & 1 & 0 \\ 0 & \cos^2 x - \frac{1}{2} \cos^2 x & 1 + \sin 2x - \frac{1}{2} \sin 2x \end{vmatrix} \] This simplifies to: \[ D = \begin{vmatrix} 2 & \cos^2 x & \sin 2x \\ 0 & 1 & 0 \\ 0 & \frac{1}{2} \cos^2 x & \frac{1}{2} + \frac{1}{2} \sin 2x \end{vmatrix} \] ### Step 3: Calculate the determinant Now we can calculate the determinant using the first row: \[ D = 2 \cdot \begin{vmatrix} 1 & 0 \\ \frac{1}{2} \cos^2 x & \frac{1}{2} + \frac{1}{2} \sin 2x \end{vmatrix} \] This gives: \[ D = 2 \left(1 \cdot \left(\frac{1}{2} + \frac{1}{2} \sin 2x\right) - 0\right) = 2 \left(\frac{1}{2} + \frac{1}{2} \sin 2x\right) = 1 + \sin 2x \] ### Step 4: Find maximum and minimum values The maximum value of \(\sin 2x\) is \(1\) and the minimum value is \(-1\): - Maximum value of \(D\) (denoted as \(\alpha\)): \[ \alpha = 1 + 1 = 2 \] - Minimum value of \(D\) (denoted as \(\beta\)): \[ \beta = 1 - 1 = 0 \] ### Step 5: Calculate \(\alpha + 2\beta\) Now we can calculate \(\alpha + 2\beta\): \[ \alpha + 2\beta = 2 + 2 \cdot 0 = 2 \] ### Final Result Thus, the value of \(\alpha + 2\beta\) is: \[ \boxed{2} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If the maximum and minimum values of the determinant |(1 + sin^(2)x,cos^(2) x,sin 2x),(sin^(2) x,1 + cos^(2) x,sin 2x),(sin^(2) x,cos^(2) x,1 + sin 2x)| are alpha and beta , then

int(sin^(8)x-cos^(8)x)/(1-2sin^(2)x cos^(2)x)dx

|(sin^(2) x,cos^(2) x,1),(cos^(2) x,sin^(2) x,1),(- 10,12,2)| =

(i) Find maximum value of f(x)=|{:(1+sin^(2)x,cos^(2)x,4sin2x),(sin^(2)x,1+cos^(2)x,4sin2x),(sin^(2)x,cos^(2)x,1+4sin2x):}| . (ii) Let A,B and C be the angles of triangle such that Agt=Bgt=C. Find the minimum value of Delta where Delta=|{:(sin^(2)A,sinAcosA,cos^(2)A),(sin^(2) B,sinBcosB,cos^(2)B),(sin^(2)C,sinCcosC,cos^(2)C):}| .

Find a quadratic polynomial varphi(x) whose zeros are the maximum and minimum values of the function f(x)=|(1+sin^2x, cos^2x,sin2x) ,(sin^2x,1+cos^2x,sin2x), (sin^2x ,cos^2x,1+sin2x)|

int(sin2x)/((1+cos2x)^(2))dx

int(1+sin2x)/(cos^2x)dx

Find a quadratic polynomial phi(x) whose zeros are the maximum and minimum values of the function: f(x)=|[1+sin^2x,cos^2x,sin2x],[sin^2x,1+cos^2x,sin2x],[sin^2x,cos^2x,1+sin2x]|

Solve (1+sin^2x-cos^2x)/(1+sin^2x+cos^2x)

Solve (sin^(2) 2x+4 sin^(4) x-4 sin^(2) x cos^(2) x)/(4-sin^(2) 2x-4 sin^(2) x)=1/9 .