Home
Class 12
MATHS
If f(x) = ((2 + x)/(1 + x))^(1 + x), the...

If `f(x) = ((2 + x)/(1 + x))^(1 + x)`, then `f'(0)` is equal to

A

2 log 2

B

log 2

C

3 log 2 - 1

D

2 log 2 - 1

Text Solution

AI Generated Solution

The correct Answer is:
To find \( f'(0) \) for the function \( f(x) = \left( \frac{2 + x}{1 + x} \right)^{1 + x} \), we will follow these steps: ### Step 1: Rewrite the function Let \( y = f(x) = \left( \frac{2 + x}{1 + x} \right)^{1 + x} \). ### Step 2: Take the natural logarithm Taking the natural logarithm of both sides gives: \[ \log y = (1 + x) \log \left( \frac{2 + x}{1 + x} \right) \] ### Step 3: Differentiate both sides Now, differentiate both sides with respect to \( x \): \[ \frac{1}{y} \frac{dy}{dx} = \frac{d}{dx} \left[ (1 + x) \log \left( \frac{2 + x}{1 + x} \right) \right] \] Using the product rule on the right-hand side: \[ \frac{d}{dx} \left[ (1 + x) \log \left( \frac{2 + x}{1 + x} \right) \right] = \log \left( \frac{2 + x}{1 + x} \right) + (1 + x) \frac{d}{dx} \left[ \log \left( \frac{2 + x}{1 + x} \right) \right] \] ### Step 4: Differentiate the logarithm Using the chain rule: \[ \frac{d}{dx} \left[ \log \left( \frac{2 + x}{1 + x} \right) \right] = \frac{1}{\frac{2 + x}{1 + x}} \cdot \frac{d}{dx} \left( \frac{2 + x}{1 + x} \right) \] Using the quotient rule: \[ \frac{d}{dx} \left( \frac{2 + x}{1 + x} \right) = \frac{(1)(1 + x) - (2 + x)(1)}{(1 + x)^2} = \frac{1 + x - 2 - x}{(1 + x)^2} = \frac{-1}{(1 + x)^2} \] Thus, \[ \frac{d}{dx} \left[ \log \left( \frac{2 + x}{1 + x} \right) \right] = \frac{-1}{\frac{2 + x}{1 + x}} \cdot \frac{-1}{(1 + x)^2} = \frac{1 + x}{(2 + x)(1 + x)^2} = \frac{1}{(2 + x)(1 + x)} \] ### Step 5: Substitute back into the derivative Now substituting back: \[ \frac{1}{y} \frac{dy}{dx} = \log \left( \frac{2 + x}{1 + x} \right) + (1 + x) \cdot \frac{1}{(2 + x)(1 + x)} \] ### Step 6: Evaluate at \( x = 0 \) Now we need to evaluate \( f'(0) \): 1. Calculate \( y \) at \( x = 0 \): \[ y = f(0) = \left( \frac{2 + 0}{1 + 0} \right)^{1 + 0} = 2 \] 2. Calculate \( \log \left( \frac{2 + 0}{1 + 0} \right) \): \[ \log(2) \] 3. Substitute \( x = 0 \) into the derivative: \[ \frac{1}{2} \frac{dy}{dx} = \log(2) + 1 \cdot \frac{1}{(2)(1)} = \log(2) + \frac{1}{2} \] Therefore, \[ \frac{dy}{dx} = 2 \left( \log(2) + \frac{1}{2} \right) = 2 \log(2) + 1 \] ### Final Answer Thus, \( f'(0) = 2 \log(2) + 1 \). ---
Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x+4) = x^(2) - 1 , then f(x) is equal to

If f(x)=(x-1)/(x+1) then f(2x) is equal to

If f(x)=(x-1)/(x+1) then f(2x) is equal to

If f(x) = (x-1)/(x+1) , then f(2) is equal to

If f'(x)=(1)/((1+x^(2))^(3//2)) and f(0)=0, then f(1) is equal to :

If f (x) = sqrt((1+ sin ^(-1) x)/(1- tan ^(-1)x)), then f (0) is equal to :

If f (x)= sqrt((1+ sin ^(-1) x)/(1- tan ^(-1)x)), then f '(0) is equal to:

If f'(x)=(dx)/((1+x^(2))^(3//2)) and f(0)=0. then f(1) is equal to

If f(x) =(x-4)/(2sqrt(x)) , then f^(')(1) is equal to

If f(x) = 3x + 1 and g(x) = x^(2) - 1 , then (f + g) (x) is equal to