Home
Class 12
MATHS
If z=3-4i then z^4-3z^3+3z^2+99z-95 is e...

If `z=3-4i` then `z^4-3z^3+3z^2+99z-95` is equal to

A

5

B

6

C

`-5`

D

`-4`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( z^4 - 3z^3 + 3z^2 + 99z - 95 \) for \( z = 3 - 4i \), we will follow these steps: ### Step 1: Substitute \( z \) into the expression We start by substituting \( z = 3 - 4i \) into the polynomial: \[ z^4 - 3z^3 + 3z^2 + 99z - 95 \] ### Step 2: Calculate \( z^2 \) First, we calculate \( z^2 \): \[ z^2 = (3 - 4i)^2 = 3^2 - 2 \cdot 3 \cdot 4i + (4i)^2 = 9 - 24i - 16 = -7 - 24i \] ### Step 3: Calculate \( z^3 \) Next, we calculate \( z^3 \): \[ z^3 = z \cdot z^2 = (3 - 4i)(-7 - 24i) = 3(-7) + 3(-24i) - 4i(-7) - 4i(-24i) \] Calculating each term: \[ = -21 - 72i + 28i + 96 = 75 - 44i \] ### Step 4: Calculate \( z^4 \) Now, we calculate \( z^4 \): \[ z^4 = z \cdot z^3 = (3 - 4i)(75 - 44i) = 3(75) + 3(-44i) - 4i(75) - 4i(-44i) \] Calculating each term: \[ = 225 - 132i - 300i - 176 = 49 - 432i \] ### Step 5: Substitute \( z^2, z^3, z^4 \) back into the polynomial Now we substitute \( z^2, z^3, z^4 \) back into the expression: \[ (49 - 432i) - 3(75 - 44i) + 3(-7 - 24i) + 99(3 - 4i) - 95 \] ### Step 6: Simplify the expression Calculating each term: \[ = (49 - 432i) - (225 - 132i) + (-21 - 72i) + (297 - 396i) - 95 \] Combining the real parts: \[ 49 - 225 - 21 + 297 - 95 = 5 \] Combining the imaginary parts: \[ -432i + 132i - 72i - 396i = -768i \] ### Final Result Thus, the expression simplifies to: \[ 5 - 768i \] ### Conclusion Therefore, the value of \( z^4 - 3z^3 + 3z^2 + 99z - 95 \) is \( 5 - 768i \). ---
Promotional Banner

Similar Questions

Explore conceptually related problems

If z=2−3i then z ^2−4z+13=

If z= -3 + sqrt2i , then prove that z^(4) + 5z^(3) + 8z^(2) + 7z + 4 is equal to -29

Z=-5+4i then Z^4 +9Z^3 +35Z^2 – Z + 4 =

If the fourth roots of unity are z_1, z_2, z_3, z_4 and z_1^2+z_2^2+z_3^2+z_4^2 is equal to :

If |z_1=1,|z_2|=2,|z_3|=3 and |z_1+z_2+z_3|=1, then |9z_1z_2+4z_3z_1+z_2z_3| is equal to

If z_(1),z_(2),z_(3) are three complex numbers, such that |z_(1)|=|z_(2)|=|z_(3)|=1 & z_(1)^(2)+z_(2)^(2)+z_(3)^(2)=0 then |z_(1)^(3)+z_(2)^(3)+z_(3)^(3)| is equal to _______. (not equal to 1)

If Z_r=cos((2rpi)/5)+isin((2rpi)/5),r=0,1,2,3,4,... then z_1z_2z_3z_4z_5 is equal to

z is a complex number satisfying z^(4)+z^(3)+2z^(2)+z+1=0 , then |z| is equal to

If |z_1|=1, |z_2|=2, |z_3|=3 and |9z_1z_2 + 4z_1z_3 + z_2z_3|=36 , then |z_1+z_2+z_3| is equal to _______.

Let z_(1),z_(2),z_(3),z_(4) are distinct complex numbers satisfying |z|=1 and 4z_(3) = 3(z_(1) + z_(2)) , then |z_(1) - z_(2)| is equal to