Home
Class 12
MATHS
If f(x) ={(lambdasqrt(2x+3),0 lex le3),(...

If `f(x) ={(lambdasqrt(2x+3),0 lex le3),(mux + 12, 3 < x le 9):}` is differentiable at `x = 3`, then the value of `lambda + mu` is equal to

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to ensure that the function \( f(x) \) is both continuous and differentiable at \( x = 3 \). The function is defined as follows: \[ f(x) = \begin{cases} \lambda \sqrt{2x + 3} & \text{for } 0 \leq x \leq 3 \\ \mu x + 12 & \text{for } 3 < x \leq 9 \end{cases} \] ### Step 1: Ensure Continuity at \( x = 3 \) For \( f(x) \) to be continuous at \( x = 3 \), the left-hand limit as \( x \) approaches 3 must equal the right-hand limit at \( x = 3 \): \[ \lim_{x \to 3^-} f(x) = \lim_{x \to 3^+} f(x) \] Calculating the left-hand limit: \[ \lim_{x \to 3^-} f(x) = \lambda \sqrt{2(3) + 3} = \lambda \sqrt{9} = 3\lambda \] Calculating the right-hand limit: \[ \lim_{x \to 3^+} f(x) = \mu(3) + 12 = 3\mu + 12 \] Setting these two limits equal gives us the first equation: \[ 3\lambda = 3\mu + 12 \quad \text{(1)} \] ### Step 2: Ensure Differentiability at \( x = 3 \) For \( f(x) \) to be differentiable at \( x = 3 \), the left-hand derivative must equal the right-hand derivative: \[ \lim_{x \to 3^-} f'(x) = \lim_{x \to 3^+} f'(x) \] Calculating the left-hand derivative: \[ f'(x) = \frac{\lambda}{2\sqrt{2x + 3}} \cdot 2 = \frac{\lambda}{\sqrt{2x + 3}} \quad \text{for } 0 \leq x < 3 \] At \( x = 3 \): \[ \lim_{x \to 3^-} f'(x) = \frac{\lambda}{\sqrt{2(3) + 3}} = \frac{\lambda}{\sqrt{9}} = \frac{\lambda}{3} \] Calculating the right-hand derivative: \[ f'(x) = \mu \quad \text{for } 3 < x \leq 9 \] Thus: \[ \lim_{x \to 3^+} f'(x) = \mu \] Setting these two derivatives equal gives us the second equation: \[ \frac{\lambda}{3} = \mu \quad \text{(2)} \] ### Step 3: Solve the System of Equations From equation (2), we can express \( \mu \) in terms of \( \lambda \): \[ \mu = \frac{\lambda}{3} \] Substituting this into equation (1): \[ 3\lambda = 3\left(\frac{\lambda}{3}\right) + 12 \] This simplifies to: \[ 3\lambda = \lambda + 12 \] Rearranging gives: \[ 3\lambda - \lambda = 12 \implies 2\lambda = 12 \implies \lambda = 6 \] Now substituting \( \lambda = 6 \) back into equation (2) to find \( \mu \): \[ \mu = \frac{6}{3} = 2 \] ### Step 4: Find \( \lambda + \mu \) Now we can find \( \lambda + \mu \): \[ \lambda + \mu = 6 + 2 = 8 \] ### Final Answer Thus, the value of \( \lambda + \mu \) is \( \boxed{8} \).
Promotional Banner

Similar Questions

Explore conceptually related problems

"If "f(x) ={underset(x^(2)+1.2 le x le 3)(2x+1.1 le x le 2), then evaluate int_(1)^(3) f(x) dx.

If f(x)={{:(,x^(2)+1,0 le x lt 1),(,-3x+5, 1 le x le 2):}

If f (x)= {{:(1+x, 0 le x le 2),( 3x-2, 2 lt x le 3):}, then f (f(x)) is not differentiable at:

6 le -3 (2x - 4) lt 12

If f(x)={:{(3x^2+12x-1"," -1le x le2),(37-x ","2 lt x le 3):} then

if f(x) = {[3x+4 , 0 le x le 2],[5x , 2 le x le 3]}, then evaluate int_(0)^(3) f(x) dx.

If f(x) = {{:(e ^(x),,"," 0 le x lt 1 ,, ""), (2- e^(x - 1),,"," 1 lt x le 2,, and g(x) = int_(0)^(x) f(t ) dt","),( x- e,,"," 2lt x le 3 ,, ""):} x in [ 1, 3 ] , then

Let f (x)= {{:(2-x"," , -3 le x le 0),( x-2"," , 0 lt x lt 4):} Then f ^(-1) (x) is discontinous at x=

Let f(x) = {{:(1-x ,"If" 0 le x le 1),(0, "if" 1 lt x le 2),((2-x)^(2),"if"2 lt x le 3):} and function F(x) = int_(0)^(x)f(t) dt . If number of points of discountinuity in [0,3] and non-differentiablity in (0,2) and F(x) are alpha and beta respectively , then (alpha - beta) is equal to .

Let f(x) be defined in the interval [0,4] such that f(x) ={{:(1-x,0lex le 1),( x+2, 1lt xlt2),( 4-x, 2 le x le 4):} , then the number of points where f(x) is discontinuous is (a) 1 (b) 2 (c) 3 (d) none of these