Home
Class 12
MATHS
Consider the function f(x)=cos^(-1)([2^(...

Consider the function `f(x)=cos^(-1)([2^(x)])+sin^(-1)([2^(x)]-1)`, then
(where `[.]` represents the greatest integer part function)

A

Domain of f(x) is `x in (-oo,0]`

B

Range of `f(x)` is singleton

C

`f(x)` is an even function

D

`f(x)` is an odd function

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the function given: \[ f(x) = \cos^{-1}(\lfloor 2^x \rfloor) + \sin^{-1}(\lfloor 2^x \rfloor - 1) \] where \(\lfloor . \rfloor\) denotes the greatest integer function. ### Step 1: Determine the range of \( \lfloor 2^x \rfloor \) The expression \( 2^x \) can take values from \( 0 \) to \( 2 \) as \( x \) varies. Thus, the greatest integer function \( \lfloor 2^x \rfloor \) can take the values: - \( 0 \) when \( 0 \leq 2^x < 1 \) (i.e., \( x < 0 \)) - \( 1 \) when \( 1 \leq 2^x < 2 \) (i.e., \( 0 \leq x < 1 \)) - \( 2 \) when \( 2^x \geq 2 \) (i.e., \( x \geq 1 \)) ### Step 2: Evaluate \( f(x) \) for different cases of \( \lfloor 2^x \rfloor \) #### Case 1: \( \lfloor 2^x \rfloor = 0 \) When \( \lfloor 2^x \rfloor = 0 \): \[ f(x) = \cos^{-1}(0) + \sin^{-1}(0 - 1) \] \[ = \frac{\pi}{2} + \sin^{-1}(-1) \] \[ = \frac{\pi}{2} - \frac{\pi}{2} = 0 \] #### Case 2: \( \lfloor 2^x \rfloor = 1 \) When \( \lfloor 2^x \rfloor = 1 \): \[ f(x) = \cos^{-1}(1) + \sin^{-1}(1 - 1) \] \[ = 0 + \sin^{-1}(0) = 0 \] #### Case 3: \( \lfloor 2^x \rfloor = 2 \) When \( \lfloor 2^x \rfloor = 2 \): \[ f(x) = \cos^{-1}(2) + \sin^{-1}(2 - 1) \] However, \( \cos^{-1}(2) \) is undefined in the real number system, so this case does not contribute to the function. ### Conclusion From the above evaluations, we find that for \( x < 0 \) and \( 0 \leq x < 1 \), \( f(x) = 0 \). The case where \( \lfloor 2^x \rfloor = 2 \) does not yield a valid output. Thus, we conclude that the function \( f(x) \) is constant and equal to \( 0 \) for all \( x < 1 \). ### Final Answer The range of \( f(x) \) is \( \{0\} \), which indicates that it is a single-valued function.
Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=|x-1|.([x]=[-x]), then (where [.] represents greatest integer function)

Find x satisfying [tan^(-1)x]+[cos^(-1)x]=2, where [] represents the greatest integer function.

If f(x) = (e^([x] + |x|) -3)/([x] + |x|+ 1) , then: (where [.] represents greatest integer function)

Find x satisfying [tan^(-1)x]+[cot^(-1)x]=2, where [.] represents the greatest integer function.

The domain of the function f(x)=(1)/(sqrt([x]^(2)-[x]-20)) is (where, [.] represents the greatest integer function)

Find the domain of the function f(x)=(1)/([x]^(2)-7[x]-8) , where [.] represents the greatest integer function.

if f(x) ={{:((1-|x|)/(1+x),xne-1),(1, x=-1):} then f([2x]) , where [.] represents the greatest integer function , is

f(x)=sin^(-1)[e^(x)]+sin^(-1)[e^(-x)] where [.] greatest integer function then

If f(x) =[ sin ^(-1)(sin 2x )] (where, [] denotes the greatest integer function ), then

The range of the function y=2sin^(-1)[x^(2)+(1)/(2)]+cos^(-1)[x^(2)-(1)/(2)] is (where, [.] denotes the greatest integer function)