Home
Class 12
MATHS
The value of lim(xrarr0^(-))(2^(1//x)+2^...

The value of `lim_(xrarr0^(-))(2^(1//x)+2^(3//x))/(3(2^(1//x))+5(2^(3//x))` is

A

`1//3`

B

`1//5`

C

1

D

`1//4`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \( \lim_{x \to 0^-} \frac{2^{1/x} + 2^{3/x}}{3 \cdot 2^{1/x} + 5 \cdot 2^{3/x}} \), we will follow these steps: ### Step 1: Rewrite the limit We start by rewriting the expression in the limit: \[ \lim_{x \to 0^-} \frac{2^{1/x} + 2^{3/x}}{3 \cdot 2^{1/x} + 5 \cdot 2^{3/x}} \] ### Step 2: Factor out \( 2^{1/x} \) Next, we factor out \( 2^{1/x} \) from both the numerator and the denominator: \[ = \lim_{x \to 0^-} \frac{2^{1/x} \left(1 + 2^{2/x}\right)}{2^{1/x} \left(3 + 5 \cdot 2^{2/x}\right)} \] ### Step 3: Cancel \( 2^{1/x} \) Since \( 2^{1/x} \) is common in both the numerator and the denominator, we can cancel it out (as long as \( 2^{1/x} \neq 0 \)): \[ = \lim_{x \to 0^-} \frac{1 + 2^{2/x}}{3 + 5 \cdot 2^{2/x}} \] ### Step 4: Analyze \( 2^{2/x} \) as \( x \to 0^- \) As \( x \to 0^- \), \( \frac{2}{x} \to -\infty \), which means \( 2^{2/x} \to 0 \): \[ = \frac{1 + 0}{3 + 0} = \frac{1}{3} \] ### Final Answer Thus, the value of the limit is: \[ \frac{1}{3} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of lim_(xrarr0^(-))(4^((3)/(x))+15(2^((1)/(x))))/(2^(1+(6)/(x))+6(2^((1)/(x)))) is equal to

The value of lim_(xrarr0^(-))(4^(2+(3)/(x))+5(2^((1)/(x))))/(2^((1+(6)/(x)))+6(2^((1)/(x)))) is equal to

The value of lim_(xrarr0)(e^(x)-cos2x-x)/(x^2) , is

lim_(xrarr0) (x^(2)-3x+2)

The value of lim_(xrarr0) (e^x-(x+x))/(x^2) ,is

The value of lim_(xrarr0)((sinx)/(x))^((1)/(x^2)) , is

The value of lim_(xrarr0)(1-cos^(3)x)/(xsinxcosx)

lim_(xrarr0)((1-cos x)/x^2)

The value of lim_(xrarr0)((1+6x)^((1)/(3))-(1+4x)^((1)/(2)))/(x^(2)) is equal to

The value of lim_(xrarr0)((4^x-1)^3)/(sin.(x^2)/(4)log(1+3x)) ,is