Home
Class 12
MATHS
The value of the integral inte^(3sin^(-1...

The value of the integral `inte^(3sin^(-1)x)((1)/(sqrt(1-x^(2)))+e^(3cos^(-1)x))dx` is equal to
(where, c is an arbitrary constant)

A

`(e^(3sqrt(sin^(-1)x)))/(3)+xe^((3pi)/(2))+c`

B

`e^(sqrt(sin^(-1)x))+e^(pi//2)+c`

C

`(e^(3sin^(-1)x))/(3)+xe^((3pi)/(2))+c`

D

`e^((pi)/(2))+e^(x)((pi)/(2))+c`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ \int e^{3 \sin^{-1} x} \left( \frac{1}{\sqrt{1 - x^2}} + e^{3 \cos^{-1} x} \right) dx, \] we can break it down step by step. ### Step 1: Rewrite the Integral We start by rewriting the integral: \[ \int e^{3 \sin^{-1} x} \left( \frac{1}{\sqrt{1 - x^2}} + e^{3 \cos^{-1} x} \right) dx = \int e^{3 \sin^{-1} x} \frac{1}{\sqrt{1 - x^2}} \, dx + \int e^{3 \sin^{-1} x} e^{3 \cos^{-1} x} \, dx. \] ### Step 2: Simplify the Second Integral Using the identity \( \sin^{-1} x + \cos^{-1} x = \frac{\pi}{2} \), we can simplify the second integral: \[ e^{3 \cos^{-1} x} = e^{3 \left( \frac{\pi}{2} - \sin^{-1} x \right)} = e^{\frac{3\pi}{2}} e^{-3 \sin^{-1} x}. \] Thus, the second integral becomes: \[ \int e^{3 \sin^{-1} x} e^{3 \cos^{-1} x} \, dx = e^{\frac{3\pi}{2}} \int dx. \] ### Step 3: Combine the Integrals Now we can combine the two integrals: \[ \int e^{3 \sin^{-1} x} \frac{1}{\sqrt{1 - x^2}} \, dx + e^{\frac{3\pi}{2}} \int dx. \] ### Step 4: Change of Variables Let \( t = \sin^{-1} x \). Then, we have: \[ dx = \cos(t) \, dt = \sqrt{1 - \sin^2(t)} \, dt = \sqrt{1 - x^2} \, dt. \] Thus, the first integral becomes: \[ \int e^{3t} \, dt. \] ### Step 5: Evaluate the Integrals 1. For the first integral: \[ \int e^{3t} \, dt = \frac{1}{3} e^{3t} + C_1 = \frac{1}{3} e^{3 \sin^{-1} x} + C_1. \] 2. For the second integral: \[ e^{\frac{3\pi}{2}} \int dx = e^{\frac{3\pi}{2}} x + C_2. \] ### Step 6: Combine Results Combining both results, we have: \[ \int e^{3 \sin^{-1} x} \left( \frac{1}{\sqrt{1 - x^2}} + e^{3 \cos^{-1} x} \right) dx = \frac{1}{3} e^{3 \sin^{-1} x} + e^{\frac{3\pi}{2}} x + C, \] where \( C = C_1 + C_2 \) is the arbitrary constant. ### Final Answer Thus, the value of the integral is: \[ \frac{1}{3} e^{3 \sin^{-1} x} + e^{\frac{3\pi}{2}} x + C. \]
Promotional Banner

Similar Questions

Explore conceptually related problems

int e^(sin^(-1)x)((log_(e)x)/(sqrt(1-x^(2)))+(1)/(x))dx is equal to

The value of the integral inte^(x^(2)+(1)/(x))(2x^(2)-(1)/(x)+1)dx is equal to (where C is the constant of integration)

The value of the integral I=int(2x^(9)+x^(10))/((x^(2)+x^(3))^(3))dx is equal to (where, C is the constant of integration)

int(sin^(3)x)/((1+cos^(2)x)sqrt(1+cos^(2)x+cos^(4))x)dx is equal to

The value of the integral I=int_((1)/(sqrt3))^(sqrt3)(dx)/(1+x^(2)+x^(3)+x^(5)) is equal to

The value of the integral int("cosec"^(2)x-2019)/(cos^(2019)x)dx is equal to (where C is the constant of integration)

The value of the integral int_(-1)^(1)(dx)/((1+x^(2))(1+e^(x)) is equal to

The value of the integral I=int_(0)^((pi)/(2))(sin^(3)x -cos^(3)x)/(1+sin^(6)x cos^(6)x)dx is equal to

int e^x (1 + 10 x^9 - x^20)/((1 - x^(10))sqrt(1 - x^(20))) dx equal to: (where c is an integral constant)

The value of the definite integral I=int_(-1)^(1)ln((2-sin^(3)x)/(2+sin^(3)x))dx is equal to