Home
Class 12
PHYSICS
The position vector of a particle is vec...

The position vector of a particle is `vec( r ) = ( 3 hat( i ) + 4 hat( j ))` metre and its angular velocity ` vec( omega) =(hat( j)+ 2hat( k )) rad s^(-1)` then its linear velocity is ( in `ms^(-1)`)

A

(a)`- ( 8hat( i ) - 6 hat( j ) + 3 hat( k ))`

B

(b)` ( 3hat( i ) + 6 hat( j ) + 8 hat( k ))`

C

(c)` -( 3hat( i ) + 6 hat( j ) + 6 hat( k ))`

D

(d)` ( 6hat( i ) + 8 hat( j ) + 3 hat( k ))`

Text Solution

AI Generated Solution

The correct Answer is:
To find the linear velocity of a particle given its position vector and angular velocity, we can use the formula: \[ \vec{v} = \vec{\omega} \times \vec{r} \] Where: - \(\vec{v}\) is the linear velocity, - \(\vec{\omega}\) is the angular velocity, - \(\vec{r}\) is the position vector. ### Step 1: Identify the vectors The position vector \(\vec{r}\) is given as: \[ \vec{r} = 3 \hat{i} + 4 \hat{j} \text{ (in meters)} \] The angular velocity \(\vec{\omega}\) is given as: \[ \vec{\omega} = \hat{j} + 2 \hat{k} \text{ (in rad/s)} \] ### Step 2: Set up the cross product To find the linear velocity, we need to compute the cross product \(\vec{\omega} \times \vec{r}\). We can set this up using the determinant of a matrix: \[ \vec{v} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 0 & 1 & 2 \\ 3 & 4 & 0 \end{vmatrix} \] ### Step 3: Calculate the determinant Now we will calculate the determinant: \[ \vec{v} = \hat{i} \begin{vmatrix} 1 & 2 \\ 4 & 0 \end{vmatrix} - \hat{j} \begin{vmatrix} 0 & 2 \\ 3 & 0 \end{vmatrix} + \hat{k} \begin{vmatrix} 0 & 1 \\ 3 & 4 \end{vmatrix} \] Calculating each of the 2x2 determinants: 1. For \(\hat{i}\): \[ \begin{vmatrix} 1 & 2 \\ 4 & 0 \end{vmatrix} = (1 \cdot 0) - (2 \cdot 4) = 0 - 8 = -8 \] 2. For \(-\hat{j}\): \[ \begin{vmatrix} 0 & 2 \\ 3 & 0 \end{vmatrix} = (0 \cdot 0) - (2 \cdot 3) = 0 - 6 = -6 \implies -(-6) = 6 \] 3. For \(\hat{k}\): \[ \begin{vmatrix} 0 & 1 \\ 3 & 4 \end{vmatrix} = (0 \cdot 4) - (1 \cdot 3) = 0 - 3 = -3 \] ### Step 4: Combine the results Putting it all together, we have: \[ \vec{v} = -8 \hat{i} + 6 \hat{j} - 3 \hat{k} \] ### Final answer Thus, the linear velocity vector is: \[ \vec{v} = -8 \hat{i} + 6 \hat{j} - 3 \hat{k} \text{ m/s} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

Find the unit vector of the vector vec(r ) = 4hat(i) - 2hat(j) + 3 hat(k)

For a body, angular velocity (vec(omega)) = hat(i) - 2hat(j) + 3hat(k) and radius vector (vec(r )) = hat(i) + hat(j) + vec(k) , then its velocity is :

What is the value of linear velocity, if vec(omega)=3hat(i)-4hat(j)+hat(k) and vec(R)=5hat(i)-6hat(j)+6hat(k) .

Unit vectors perpendicular to the plane of vectors vec(a) = 2 hat(*i) - 6 hat(j) - 3 hat(k) and vec(b) = 4 hat(i) + 3 hat(j) - hat(k) are

Show that the two vectors vec(A) and vec(B) are parallel , where vec(A) = hat(i) + 2 hat(j) + hat(k) and vec(B) = 3 hat(i) + 6 hat(j) + 3 hat(k)

A particle is moving with speed 6m//s along the direction of vec(A)=2hat(i)+2hat(j)-hat(k) , then its velocity is :

The linear velocity of a rotating body is given by vec(v)= vec(omega)xxvec(r ) , where vec(omega) is the angular velocity and vec(r ) is the radius vector. The angular velocity of a body is vec(omega)= hat(i)-2hat(j)+2hat(k) and the radius vector vec(r )= 4hat(j)-3hat(k) , then |vec(v)| is

If vec a.hat i= vec a.( hat i+ hat j)= vec a.( hat i+ hat j+ hat k) , then find the unit vector vec a

The number of unit vectors perpendicular to the vector vec(a) = 2 hat(i) + hat(j) + 2 hat(k) and vec(b) = hat(j) + hat(k) is

Show that the vectors vec(A) = 2 hat(i) - 3 hat(j)-1hat(k) and vec(B) = - 6hat(i) +9 hat(j) +3 hat(k) are parallel .