Home
Class 12
MATHS
If f(k - x) + f(x) = sin x, then the val...

If `f(k - x) + f(x) = sin x`, then the value of integral `I = int_(0)^(k) f(x)dx` is equal to

A

cos k

B

`2 cos^(2) (k/2)`

C

`sin^(2) (k/2)`

D

`sin k`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the equation given: \[ f(k - x) + f(x) = \sin x \] We need to find the value of the integral: \[ I = \int_0^k f(x) \, dx \] ### Step 1: Substitute \( x \) with \( k - x \) We can substitute \( x \) with \( k - x \) in the original equation: \[ f(k - (k - x)) + f(k - x) = \sin(k - x) \] This simplifies to: \[ f(x) + f(k - x) = \sin(k - x) \] ### Step 2: Write the two equations Now we have two equations: 1. \( f(k - x) + f(x) = \sin x \) (Equation 1) 2. \( f(x) + f(k - x) = \sin(k - x) \) (Equation 2) ### Step 3: Combine the equations From both equations, we can see that: \[ \sin(k - x) = \sin x \] This implies that: \[ f(k - x) + f(x) = \sin x \] \[ f(k - x) + f(x) = \sin(k - x) \] ### Step 4: Set up the integral Now, we can express the integral \( I \): \[ I = \int_0^k f(x) \, dx \] ### Step 5: Change of variable in the integral Let's change the variable in the integral by substituting \( x \) with \( k - x \): When \( x = 0 \), \( k - x = k \) and when \( x = k \), \( k - x = 0 \). Thus, we have: \[ I = \int_k^0 f(k - x) (-dx) = \int_0^k f(k - x) \, dx \] ### Step 6: Use the original equation Using the original equation \( f(k - x) = \sin x - f(x) \): \[ I = \int_0^k (\sin x - f(x)) \, dx \] ### Step 7: Split the integral Now we can split the integral: \[ I = \int_0^k \sin x \, dx - \int_0^k f(x) \, dx \] ### Step 8: Substitute back for \( I \) This gives us: \[ I = \int_0^k \sin x \, dx - I \] ### Step 9: Solve for \( I \) Now, we can solve for \( I \): \[ 2I = \int_0^k \sin x \, dx \] ### Step 10: Calculate the integral The integral of \( \sin x \) is: \[ \int \sin x \, dx = -\cos x \] Thus, \[ \int_0^k \sin x \, dx = [-\cos x]_0^k = -\cos k + \cos 0 = 1 - \cos k \] ### Step 11: Final expression for \( I \) Now substituting back: \[ 2I = 1 - \cos k \] So, \[ I = \frac{1 - \cos k}{2} \] ### Step 12: Final result Using the identity \( 1 - \cos k = 2 \sin^2\left(\frac{k}{2}\right) \): \[ I = \sin^2\left(\frac{k}{2}\right) \] Thus, the value of the integral \( I \) is: \[ I = \sin^2\left(\frac{k}{2}\right) \]
Promotional Banner

Similar Questions

Explore conceptually related problems

The integral int_(0)^(pi) x f(sinx )dx is equal to

If f(x) satisfies f(x)+f(3-x)=3 AA x in R , then the value of integral I=int_((3)/(4))^((9)/(4))f(x)dx is equal to

If f(x)=cos(tan^(-1)x) , then the value of the integral int_(0)^(1)xf''(x)dx is

If f(x) is a continuous function satisfying f(x)=f(2-x) , then the value of the integral I=int_(-3)^(3)f(1+x)ln ((2+x)/(2-x))dx is equal to

The value of integral sum _(k=1)^(n) int _(0)^(1) f(k - 1+x) dx is

If f(1 + x) = f(1 - x) (AA x in R) , then the value of the integral I = int_(-7)^(9)(f(x))/(f(x)+f(2-x))dx is

The integral int_(0)^(pi//2) f(sin 2 x)sin x dx is equal to

The value of the integral int_(0)^(2a) (f(x))/(f(x)+f(2a-x))dx is equal to

The value of int [f(x)g''(x) - f''(x)g(x)] dx is equal to

Let f(x)=min{|x+2|,|x|,|x-2|} then the value of the integral int_-2^2 f(x)dx is