Home
Class 12
MATHS
If y = tan^(-1) (x/(1 + 6x^2)) + tan^(-1...

If `y = tan^(-1) (x/(1 + 6x^2)) + tan^(-1) ((2x - 1)/(2x + 1)), (AA x > 0)` then `(dy)/(dx)` is equal to

A

`3/(1 + 9x^2)`

B

`1/(1 + 6x^2)`

C

`1/(1 + 6x^2) + 1/(1 + x^2)`

D

`3/(1 + 6x^2)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the derivative \( \frac{dy}{dx} \) of the function \[ y = \tan^{-1} \left( \frac{x}{1 + 6x^2} \right) + \tan^{-1} \left( \frac{2x - 1}{2x + 1} \right), \] we will use the properties of the inverse tangent function and the chain rule for differentiation. ### Step 1: Simplify the Expression We can use the formula for the difference of two inverse tangents: \[ \tan^{-1}(a) + \tan^{-1}(b) = \tan^{-1}\left( \frac{a + b}{1 - ab} \right), \] if \( ab < 1 \). However, in this case, we will differentiate each term separately. ### Step 2: Differentiate the First Term The first term is \[ y_1 = \tan^{-1} \left( \frac{x}{1 + 6x^2} \right). \] Using the derivative of \( \tan^{-1}(u) \): \[ \frac{d}{dx} \tan^{-1}(u) = \frac{1}{1 + u^2} \cdot \frac{du}{dx}, \] we set \( u = \frac{x}{1 + 6x^2} \). Now, we need to find \( \frac{du}{dx} \): \[ u = \frac{x}{1 + 6x^2} \implies \frac{du}{dx} = \frac{(1 + 6x^2)(1) - x(12x)}{(1 + 6x^2)^2} = \frac{1 + 6x^2 - 12x^2}{(1 + 6x^2)^2} = \frac{1 - 6x^2}{(1 + 6x^2)^2}. \] Thus, \[ \frac{dy_1}{dx} = \frac{1}{1 + \left( \frac{x}{1 + 6x^2} \right)^2} \cdot \frac{1 - 6x^2}{(1 + 6x^2)^2}. \] ### Step 3: Simplify the Derivative of the First Term Now, we simplify \( 1 + \left( \frac{x}{1 + 6x^2} \right)^2 \): \[ 1 + \left( \frac{x}{1 + 6x^2} \right)^2 = 1 + \frac{x^2}{(1 + 6x^2)^2} = \frac{(1 + 6x^2)^2 + x^2}{(1 + 6x^2)^2} = \frac{1 + 12x^2 + 36x^4 + x^2}{(1 + 6x^2)^2} = \frac{1 + 13x^2 + 36x^4}{(1 + 6x^2)^2}. \] Thus, \[ \frac{dy_1}{dx} = \frac{(1 - 6x^2)}{(1 + 6x^2)^2} \cdot \frac{(1 + 6x^2)^2}{1 + 13x^2 + 36x^4} = \frac{1 - 6x^2}{1 + 13x^2 + 36x^4}. \] ### Step 4: Differentiate the Second Term Now, we differentiate the second term: \[ y_2 = \tan^{-1} \left( \frac{2x - 1}{2x + 1} \right). \] Let \( v = \frac{2x - 1}{2x + 1} \). Using the same derivative formula: \[ \frac{dv}{dx} = \frac{(2x + 1)(2) - (2x - 1)(2)}{(2x + 1)^2} = \frac{2(2x + 1 - (2x - 1))}{(2x + 1)^2} = \frac{4}{(2x + 1)^2}. \] Thus, \[ \frac{dy_2}{dx} = \frac{1}{1 + v^2} \cdot \frac{dv}{dx}. \] Now, calculate \( 1 + v^2 \): \[ 1 + v^2 = 1 + \left( \frac{2x - 1}{2x + 1} \right)^2 = \frac{(2x + 1)^2 + (2x - 1)^2}{(2x + 1)^2} = \frac{(4x^2 + 4x + 1) + (4x^2 - 4x + 1)}{(2x + 1)^2} = \frac{8x^2 + 2}{(2x + 1)^2}. \] Thus, \[ \frac{dy_2}{dx} = \frac{(2x + 1)^2}{8x^2 + 2} \cdot \frac{4}{(2x + 1)^2} = \frac{4}{8x^2 + 2} = \frac{2}{4x^2 + 1}. \] ### Step 5: Combine the Derivatives Now, we can combine the derivatives: \[ \frac{dy}{dx} = \frac{dy_1}{dx} + \frac{dy_2}{dx} = \frac{1 - 6x^2}{1 + 13x^2 + 36x^4} + \frac{2}{4x^2 + 1}. \] ### Final Answer Thus, the final answer for \( \frac{dy}{dx} \) is: \[ \frac{dy}{dx} = \frac{1 - 6x^2}{1 + 13x^2 + 36x^4} + \frac{2}{4x^2 + 1}. \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If y=sum_(r=1)^(x) tan^(-1)((1)/(1+r+r^(2))) , then (dy)/(dx) is equal to

If y = tan^(-1) (sec x - tan x ) , "then" (dy)/(dx) is equal to

tan^(- 1) (1/(x+y)) +tan^(- 1) (y/(x^2+x y+1)) =cot^(- 1)x

Find (dy)/(dx) if y=tan^(-1)((4x)/(1+5x^2))+tan^(-1)((2+3x)/(3-2x))

Find (dy)/(dx) if y=tan^(-1)((4x)/(1+5x^2))+tan^(-1)((2+3x)/(3-2x))

If y = tan^(-1) ((1)/(x^(2) + x + 1)) + tan^(-1) ((1)/( x^(2) + 3x + 3)) + tan^(-1) ((1)/( x^(2) + 5x + 7))+ tan^(-1) ((1)/( x^(2) +7x + 13)), x gt 0 and ((dy)/( dx))_(x=0)= ( - k )/( 1+ k) then the value of k is

If tan ^(-1) ((1-x)/(1+x))= (1)/(2) tan^(-1) x, x gt 0 , then x = ?

Find (dy)/(dx) if y=tan^(-1)(4x)/(1+5x^2)+tan^(-1)(2+3x)/(3-2x)

Find (dy)/(dx) if y=tan^(-1)(4x)/(1+5x^2)+tan^(-1)(2+3x)/(3-2x)

If y=tan^(-1)((2x)/(1-x^2))+sec^(-1)((1+x^2)/(1-x^2)) , x >0 , prove that (dy)/(dx)=4/(1+x^2) .