Home
Class 12
MATHS
Let 2veca = vecb xx vecc + 2vecb where v...

Let `2veca = vecb xx vecc + 2vecb` where `veca, vecb and vecc` are three unit vectors, then sum of all possible values of `|3veca + 4vecb + 5vecc|` is

A

10

B

12

C

14

D

16

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the given equation and find the sum of all possible values of the expression \( |3\vec{a} + 4\vec{b} + 5\vec{c}| \). ### Step-by-step Solution: 1. **Given Equation**: We start with the equation: \[ 2\vec{a} = \vec{b} \times \vec{c} + 2\vec{b} \] 2. **Dot Product with \(\vec{b}\)**: We take the dot product of both sides with \(\vec{b}\): \[ 2\vec{a} \cdot \vec{b} = (\vec{b} \times \vec{c}) \cdot \vec{b} + 2\vec{b} \cdot \vec{b} \] Since \((\vec{b} \times \vec{c})\) is perpendicular to \(\vec{b}\), the dot product \((\vec{b} \times \vec{c}) \cdot \vec{b} = 0\). Thus, we have: \[ 2\vec{a} \cdot \vec{b} = 2|\vec{b}|^2 \] 3. **Magnitude of Unit Vectors**: Since \(\vec{a}\), \(\vec{b}\), and \(\vec{c}\) are unit vectors, we know that \(|\vec{b}| = 1\). Therefore: \[ 2\vec{a} \cdot \vec{b} = 2 \implies \vec{a} \cdot \vec{b} = 1 \] This implies that \(\vec{a}\) and \(\vec{b}\) are parallel and since they are unit vectors, we have: \[ \vec{a} = \vec{b} \] 4. **Substituting \(\vec{b}\)**: Substitute \(\vec{b}\) in the original equation: \[ 2\vec{a} = \vec{a} \times \vec{c} + 2\vec{a} \] This simplifies to: \[ \vec{a} \times \vec{c} = 0 \] This means \(\vec{a}\) and \(\vec{c}\) are also parallel. 5. **Finding Relationships**: Since \(\vec{a}\) and \(\vec{c}\) are parallel, we have two cases: - Case 1: \(\vec{c} = \vec{a}\) - Case 2: \(\vec{c} = -\vec{a}\) 6. **Calculating \( |3\vec{a} + 4\vec{b} + 5\vec{c}| \)**: - **For Case 1** (\(\vec{c} = \vec{a}\)): \[ |3\vec{a} + 4\vec{a} + 5\vec{a}| = |(3 + 4 + 5)\vec{a}| = |12\vec{a}| = 12 \] - **For Case 2** (\(\vec{c} = -\vec{a}\)): \[ |3\vec{a} + 4\vec{a} + 5(-\vec{a})| = |(3 + 4 - 5)\vec{a}| = |2\vec{a}| = 2 \] 7. **Sum of All Possible Values**: The possible values of \( |3\vec{a} + 4\vec{b} + 5\vec{c}| \) are \(12\) and \(2\). Therefore, the sum of all possible values is: \[ 12 + 2 = 14 \] ### Final Answer: The sum of all possible values of \( |3\vec{a} + 4\vec{b} + 5\vec{c}| \) is \( \boxed{14} \).
Promotional Banner

Similar Questions

Explore conceptually related problems

If veca, vecb and vecc are three non-coplanar vectors, then (veca + vecb + vecc). [(veca + vecb) xx (veca + vecc)] equals

If veca, vecb, vecc are the unit vectors such that veca + 2vecb + 2vecc=0 , then |veca xx vecc| is equal to:

Let vecr = (veca xx vecb)sinx + (vecb xx vecc)cosy+(vecc xx veca) , where veca,vecb and vecc are non-zero non-coplanar vectors, If vecr is orthogonal to 3veca + 5vecb+2vecc , then the value of sec^(2)y+"cosec"^(2)x+secy" cosec "x is

If veca,vecbandvecc are unit vectors such that veca+vecb+vecc=0 , then the value of veca.vecb+vecb.vecc+vecc.veca is

If veca,vecbandvecc are unit vectors such that veca+vecb+vecc=0 , then the value of veca.vecb+vecb.vecc+vecc.veca is

If veca, vecb and vecc are three vectors, such that |veca|=2, |vecb|=3, |vecc|=4, veca. vecc=0, veca. vecb=0 and the angle between vecb and vecc is (pi)/(3) , then the value of |veca xx (2vecb - 3 vecc)| is equal to

If veca, vecb, vecc are vectors such that veca.vecb=0 and veca + vecb = vecc then:

If veca + 2 vecb + 3 vecc = vec0 " then " veca xx vecb + vecb xx vecc + vecc xx veca=

If veca, vecb, vecc are unit vectors such that veca. vecb =0 = veca.vecc and the angle between vecb and vecc is pi/3 , then find the value of |veca xx vecb -veca xx vecc|

If veca, vecb, vecc are any three non coplanar vectors, then [(veca+vecb+vecc, veca-vecc, veca-vecb)] is equal to