Home
Class 12
MATHS
The value of lim(x to 0) (tan^2 3x)/(sqr...

The value of `lim_(x to 0) (tan^2 3x)/(sqrt(5) - sqrt(4 + "sec" x))` is equal to

A

`2sqrt(5)`

B

`-9sqrt(5)`

C

`9sqrt(5)`

D

`-36sqrt(5)`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(x to 0) ("sin"2X)/(2 - sqrt(4 - x)) is

The value of lim_(x to oo) (sqrt(x^(2) + x + 1) - sqrt(x^(2) - x + 1)) equals

lim_(xto2)(x^2-4)/(sqrt(x+2)-sqrt(3x-2))

lim_(x to 0) (sqrt(1 + 3x) + sqrt(1 - 3x))/(1 + 3x) is equal to

Evaluate lim_(x to 0) (sqrt(x + 2) - sqrt(2))/(x)

lim_(x rarr 3)(x-3)/(sqrt(x-2)-sqrt(4-x))

lim_(x to 0) (sqrt(1 + x + x^(2)) - sqrt(x + 1))/(2X^(2)) is equal to

The value of lim_(xto2) (sqrt(1+sqrt(2+x))-sqrt(3))/(x-2)" is "

The value of lim_(xrarr-oo)(x^(2)tan((2)/(x)))/(sqrt(16x^(2)-x+1)) is equal to

Evaluate lim_(x to 2) (x^(2)-4)/((sqrt(3x-2)-(sqrt(x+2))