Home
Class 12
MATHS
If pi < theta < (3pi)/(2) and cos theta ...

If `pi < theta < (3pi)/(2)` and `cos theta = -3/5`, then `tan ((theta)/(4))` is equal to

A

`(sqrt(5) - 1)/(2)`

B

`(sqrt(5) + 1)/(2)`

C

`(-sqrt(5) - 1)/(4)`

D

`(-sqrt(5) + 1)/(4)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( \tan\left(\frac{\theta}{2}\right) \) given that \( \pi < \theta < \frac{3\pi}{2} \) and \( \cos \theta = -\frac{3}{5} \). ### Step-by-Step Solution: 1. **Identify the Quadrant**: Since \( \pi < \theta < \frac{3\pi}{2} \), we know that \( \theta \) is in the third quadrant. In this quadrant, both sine and cosine are negative. **Hint**: Remember the signs of trigonometric functions in different quadrants. 2. **Find \( \sin \theta \)**: We know that: \[ \sin^2 \theta + \cos^2 \theta = 1 \] Substituting \( \cos \theta = -\frac{3}{5} \): \[ \sin^2 \theta + \left(-\frac{3}{5}\right)^2 = 1 \] \[ \sin^2 \theta + \frac{9}{25} = 1 \] \[ \sin^2 \theta = 1 - \frac{9}{25} = \frac{25}{25} - \frac{9}{25} = \frac{16}{25} \] Taking the square root: \[ \sin \theta = -\sqrt{\frac{16}{25}} = -\frac{4}{5} \] (We take the negative root because sine is negative in the third quadrant.) **Hint**: Use the Pythagorean identity to find sine from cosine. 3. **Calculate \( \tan\left(\frac{\theta}{2}\right) \)**: We use the half-angle formula for tangent: \[ \tan\left(\frac{\theta}{2}\right) = \frac{\sin \theta}{1 + \cos \theta} \] Substituting the values we found: \[ \tan\left(\frac{\theta}{2}\right) = \frac{-\frac{4}{5}}{1 - \frac{3}{5}} \] Simplifying the denominator: \[ 1 - \frac{3}{5} = \frac{5}{5} - \frac{3}{5} = \frac{2}{5} \] So we have: \[ \tan\left(\frac{\theta}{2}\right) = \frac{-\frac{4}{5}}{\frac{2}{5}} = -\frac{4}{5} \cdot \frac{5}{2} = -2 \] 4. **Final Result**: Thus, the value of \( \tan\left(\frac{\theta}{2}\right) \) is: \[ \tan\left(\frac{\theta}{2}\right) = -2 \] ### Summary: The final answer is \( \tan\left(\frac{\theta}{2}\right) = -2 \).
Promotional Banner

Similar Questions

Explore conceptually related problems

If t a nalpha=5/2 , tanbeta=-7/9 where alpha in [pi/2,pi] , then alpha+beta lies in the interval. [(3pi)/2,(7pi)/3] (b) [(13pi)/6,(5pi)/2] [(13pi)/6,(7pi)/3] (d) [pi/6,pi/3]

For x in (0,(5pi)/2) , define f(x)""=int_0^xsqrt(t)sint"dt" Then f has : local maximum at pi and 2pi . local minimum at pi and 2pi local minimum at pi and local maximum at 2pi . local maximum at pi and local minimum at 2pi .

1.The inverse of cosine function is defined in the intervals (A) [ -pi , 0 ] (B) [ -pi/2,0 ] (C) [ 0,pi/2 ] (D) [ pi/2 , pi ]

int_-pi^(3pi) cot^-1(cotx)dx= (A) pi^2 (B) 2pi^2 (C) 3pi^2 (D) none of these

If int_(pi//6)^(pi//3)sinxdx=kint_(pi//6)^(pi//3)cosxdx , then k is _______.

int_0^(pi//2)xsinx\ dx is equal to a. pi//2 b. pi//4 c. pi d. 1

(lim)_(x->1)(sinpix)/(x-1) is equal to a. -pi b . pi c. -1/pi d. 1/pi

Evaluate : tan ""(pi )/(12) .tan ""( pi )/(16) .tan ""(5pi )/(12) .tan ""( 7pi )/(16)

int_0^pi cos2xlogsinxdx= (A) pi (B) -pi/2 (C) pi/2 (D) none of these

Which of the following compound have number of p pi-p pi bond equal to p pi - d pi bond.