Home
Class 12
MATHS
The range of the function sin^(-1)((x^(2...

The range of the function `sin^(-1)((x^(2))/(1+x^(2)))` is

A

`[-pi//2, pi//2]`

B

`[0, pi//2)`

C

`(0, pi//2]`

D

`(-pi//2, pi//2)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the range of the function \( f(x) = \sin^{-1}\left(\frac{x^2}{1+x^2}\right) \), we will first analyze the inner function \( g(x) = \frac{x^2}{1+x^2} \). ### Step 1: Analyze the function \( g(x) = \frac{x^2}{1+x^2} \) 1. **Domain**: The function \( g(x) \) is defined for all real numbers \( x \). 2. **Behavior as \( x \to \infty \)**: \[ g(x) = \frac{x^2}{1+x^2} \approx \frac{x^2}{x^2} = 1 \quad \text{as } x \to \infty \] Thus, \( g(x) \) approaches 1 but never actually reaches it. 3. **Behavior as \( x \to 0 \)**: \[ g(0) = \frac{0^2}{1+0^2} = 0 \] 4. **Behavior for negative \( x \)**: Since \( x^2 \) is always non-negative, \( g(x) \) is also non-negative for all real \( x \). ### Step 2: Determine the range of \( g(x) \) From the analysis: - As \( x \) varies from \( -\infty \) to \( \infty \), \( g(x) \) takes values from \( 0 \) to \( 1 \) (not including \( 1 \)). - Therefore, the range of \( g(x) \) is: \[ [0, 1) \] ### Step 3: Find the range of \( f(x) = \sin^{-1}(g(x)) \) 1. **Apply the range of \( g(x) \)**: Since \( g(x) \) takes values in the interval \( [0, 1) \), we can substitute this into the inverse sine function. 2. **Calculate the range of \( f(x) \)**: \[ f(x) = \sin^{-1}(y) \quad \text{where } y \in [0, 1) \] - The minimum value occurs when \( y = 0 \): \[ \sin^{-1}(0) = 0 \] - The maximum value occurs as \( y \) approaches \( 1 \): \[ \sin^{-1}(1) = \frac{\pi}{2} \quad \text{(but never actually reaches this value)} \] ### Conclusion Thus, the range of the function \( f(x) = \sin^{-1}\left(\frac{x^2}{1+x^2}\right) \) is: \[ [0, \frac{\pi}{2}) \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If the range of the function f(x)= cot^(-1)((x^(2))/(x^(2)+1)) is (a, b), find the value of ((b)/(a)+2) .

Integrate the functions sin^(-1)((2x)/(1+x^2))

The range of the function sin^-1(x^2+2 x),x > 0 is

Find the domain and range of the function f(x)="sin"^(-1)(x^(2))/(2)

The range of the function y=2sin^(-1)[x^(2)+(1)/(2)]+cos^(-1)[x^(2)-(1)/(2)] is (where, [.] denotes the greatest integer function)

The range of the function f(x)=tan^(- 1)((x^2+1)/(x^2+sqrt(3))) x in R is

The range of the function f(x)=x^2+1/(x^2+1) is

The range of the function f(x)=x^2+1/(x^2+1) is

Range of the function f(x)=(cos^(-1)abs(1-x^(2))) is

The range of the function f(x)=(x+1)/(x-2) is