Home
Class 12
CHEMISTRY
The ionisation energy of He^(o+) is 19....

The ionisation energy of `He^(o+)` is `19.6 xx 10^(-18)` J per atom .The energy of the first stationary state of `Li^(2+)` will be

A

`21.2 xx10^(-18)"J/atom"`

B

`44.10xx10^(-18)"J/atom"`

C

`63.2xx10^(-18)"J/atom"`

D

`84.2xx10^(-18)"J/atom"`

Text Solution

AI Generated Solution

The correct Answer is:
To find the energy of the first stationary state of the \( \text{Li}^{2+} \) ion, we can use the relationship between ionization energy and atomic number. The ionization energy is proportional to the square of the atomic number (\( Z \)). ### Step-by-Step Solution: 1. **Identify the given data:** - Ionization energy of \( \text{He}^{+} \) = \( 19.6 \times 10^{-18} \) J/atom. - Atomic number of \( \text{He} \) (\( Z_{\text{He}} \)) = 2. - Atomic number of \( \text{Li} \) (\( Z_{\text{Li}} \)) = 3. 2. **Set up the proportionality relation:** The ionization energy (\( IE \)) is proportional to \( Z^2 \): \[ \frac{IE_{\text{He}^{+}}}{IE_{\text{Li}^{2+}}} = \frac{Z_{\text{He}}^2}{Z_{\text{Li}}^2} \] 3. **Substitute the values:** \[ \frac{19.6 \times 10^{-18}}{IE_{\text{Li}^{2+}}} = \frac{2^2}{3^2} \] \[ \frac{19.6 \times 10^{-18}}{IE_{\text{Li}^{2+}}} = \frac{4}{9} \] 4. **Cross-multiply to solve for \( IE_{\text{Li}^{2+}} \):** \[ 19.6 \times 10^{-18} \times 9 = 4 \times IE_{\text{Li}^{2+}} \] \[ IE_{\text{Li}^{2+}} = \frac{19.6 \times 10^{-18} \times 9}{4} \] 5. **Calculate \( IE_{\text{Li}^{2+}} \):** \[ IE_{\text{Li}^{2+}} = \frac{176.4 \times 10^{-18}}{4} = 44.1 \times 10^{-18} \text{ J/atom} \] \[ IE_{\text{Li}^{2+}} = 4.41 \times 10^{-18} \text{ J/atom} \] 6. **Conclusion:** The energy of the first stationary state of \( \text{Li}^{2+} \) is \( 4.41 \times 10^{-18} \) J per atom.
Promotional Banner

Similar Questions

Explore conceptually related problems

The ionisation energy of He^(o+) is 19.6 xx 10^(-18) J "atom" ^(-1) .The energy of the first stationary state of Li^(2+) will be

The ionisation energy of He^+" is "19.6 xx 10^(-12) J/atom. Calculate the energy of the first stationary state of Li^(2+) .

If the ionization energy of He^(+) is 19.6xx10^(-18) J per atom then the energy of Be^(3+) ion in the second stationary state is :

The ionisation energy of H atom is 21.79xx10^(-19) J . The the value of binding energy of second excited state of Li^(2+) ion

The first ionization energy of hydrogen is 2.179xx10^(-18) J The second ionization energy of helium atom will be

The ionisation energy of H atom is 13.6 eV The inoisation energy of Li^(2+) law will be

The ionisation energy of H is 13.6 eV . Calculate the ionization energy of Li^(2+) ions.

The ionization energy of He^(+) is x times that of H. The ionization energy of Li^(2+) is y times that of H. find |y-x|

Calculate the ionisation energy of He^(+) if that of H atom is 13.6eV.

The energy of an electron is 4.0 xx10^(-19) J.Express it in eV.