Home
Class 12
MATHS
Let y = x^(x^(x...oo))," then " (dy)/(d...

Let ` y = x^(x^(x...oo))," then " (dy)/(dx) ` is equal to

A

`yx^(y-1)`

B

`(y^(2))/(x(1-ylnx))`

C

`(y)/(x(1+ylnx))`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the equation given: Let \( y = x^{(x^{(x^{...})})} \). This implies that: \[ y = x^y \] ### Step 1: Taking the logarithm of both sides Taking the natural logarithm on both sides gives us: \[ \log y = \log(x^y) \] Using the property of logarithms, we can simplify the right-hand side: \[ \log y = y \log x \] ### Step 2: Differentiating both sides with respect to \( x \) Now, we differentiate both sides with respect to \( x \): Using implicit differentiation on the left side: \[ \frac{1}{y} \frac{dy}{dx} = \frac{d}{dx}(y \log x) \] Using the product rule on the right side: \[ \frac{d}{dx}(y \log x) = \frac{dy}{dx} \log x + y \cdot \frac{1}{x} \] ### Step 3: Setting up the equation Now we have: \[ \frac{1}{y} \frac{dy}{dx} = \frac{dy}{dx} \log x + \frac{y}{x} \] ### Step 4: Rearranging the equation Rearranging gives us: \[ \frac{1}{y} \frac{dy}{dx} - \frac{dy}{dx} \log x = \frac{y}{x} \] Factoring out \( \frac{dy}{dx} \): \[ \frac{dy}{dx} \left(\frac{1}{y} - \log x\right) = \frac{y}{x} \] ### Step 5: Solving for \( \frac{dy}{dx} \) Now, we can solve for \( \frac{dy}{dx} \): \[ \frac{dy}{dx} = \frac{y}{x} \cdot \frac{1}{\frac{1}{y} - \log x} \] This simplifies to: \[ \frac{dy}{dx} = \frac{y^2}{x(1 - y \log x)} \] ### Final Result Thus, the derivative \( \frac{dy}{dx} \) is: \[ \frac{dy}{dx} = \frac{y^2}{x(1 - y \log x)} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If y=x^(x^(x^x...oo) , find (dy)/(dx)

If y=x^((lnx)^ln(lnx)) , then (dy)/(dx) is equal to

Let y=sqrt(x+sqrt(x+sqrt(x+...oo)))," then "(dy)/(dx) is equal to

If y=x^(x^(x^(x^(x^(...))))),"then"(dy)/(dx)"is equal to"

If y=x^((x^(x))) then (dy)/(dx) is

If x^(y)=e^(x-y) , then (dy)/(dx) is equal to

If x=e^(y+e^(y+e^(y+...oo))),xgt0 , then (dy)/(dx) is equal to

If 2^(x)+2^(y)=2^(x+y) then (dy)/(dx) is equal to

If y=sqrt(x+sqrt(y+sqrt(x+sqrt(y+...oo)))) , then (dy)/(dx) is equal to

If y=x^(x^(2)), then (dy)/(dx) equals