Home
Class 12
MATHS
Let f(x)=2x-sinx and g(x)=3^(sqrtx) . Th...

Let `f(x)=2x-sinx` and `g(x)`=`3^(sqrtx)` . Then

A

both f and g are onto

B

gof of one - one

C

both f and g are one - one

D

All are true

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x)=(sinx)/x and g(x)=|x.f(x)|+||x-2|-1|. Then, in the interval (0,3pi) g(x) is :

Let f(x) = x^2, g(x) = sin x, h(x) =sqrtx, then verify that [fo(goh)] (x) and [(fog)oh] (x) are equal.

If g(f(x))=|sinx|a n df(g(x))=(sinsqrt(x))^2 , then f(x)=sin^2x ,g(x)=sqrt(x) f(x)=sinx ,g(x)=|x| f(x=x^2,g(x)=sinsqrt(x) fa n dg cannot be determined

Let f: RrarrR and g: RrarrR be two functions such that fog(x)=sinx^2 and gof(x)=sin^2x Then, find f(x) and g(x)dot

Let f(x)=sqrt(x^(2)-4x) and g(x) = 3x . The sum of all values for which f(x) = g(x) is

If g(f(x))=|sinx|a n df(g(x))=(sinsqrt(x))^2 , then (a).f(x)=sin^2x ,g(x)=sqrt(x) (b).f(x)=sinx ,g(x)=|x| (c)f(x=x^2,g(x)=sinsqrt(x) (d).f\ a n d \g cannot be determined

Let f: RvecR and g: Rvec be two functions such that fog(x)=sinx^2a n d gof(x)= sin^2x dot Then, find f(x)a n dg(x)dot

If g(x)=1+sqrtx and f(g(x))=3+2sqrtx+x then f(x) is equal to

If f(x) =(4-x)^2 and g(x) =sqrtx , then (g o f) (x)=

Consider f, g and h be three real valued function defined on R. Let f(x)=sin3x+cosx,g(x)=cos3x+sinx and h(x)=f^(2)(x)+g^(2)(x). Then, The length of a longest interval in which the function g=h(x) is increasing, is