Home
Class 12
MATHS
The relation tan^(-1)((1+x)/(1-x))=(pi)/...

The relation `tan^(-1)((1+x)/(1-x))=(pi)/(4)+tan^(-1)x` holds true for all

A

`x in R`

B

`x in(-oo, 1)`

C

`x in (-1 ,oo)`

D

`x in (-oo, 2)`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

The formula "cos"^(-1)(1-x^(2))/(1+x^(2))=2tan^(-1)x holds only for :

Solve the equation tan^(-1)2x+tan^(-1)3x=pi/4

tan^(-1)x-tan^(-1)y=tan^(-1)((x-y)/(1+xy)) holds good for

The set of values of x for which tan^(-1)(x)/sqrt(1-x^(2))=sin^(-1) x holds is

If tan^(-1)x+tan^(-1)y=(pi)/(4) , then cot^(-1)x+cot^(-1)y=

tan^(- 1)(x+2/x)-tan^(- 1)(4/x)=tan^(- 1)(x-2/x)

Solve tan^(-1)2x+tan^(-1)3x=pi/4 .

Solve : tan^(-1)2x+tan^(-1)3x=pi/4

Solve : tan^(-1)2x+tan^(-1)3x=pi/4

tan^(- 1)(a/x)+tan^(- 1)(b/x)=pi/2 then x=