Home
Class 12
MATHS
The value of the integral int(-a)^(a)(e^...

The value of the integral `int_(-a)^(a)(e^(x))/(1+e^(x))dx` is

A

`e^(a^(2))`

B

a

C

`e^(-a^(2))`

D

`(a)/(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_{-a}^{a} \frac{e^x}{1 + e^x} \, dx \), we can use a substitution method and properties of logarithms. Here’s a step-by-step solution: ### Step 1: Substitute the variable Let \( t = 1 + e^x \). Then, we differentiate to find \( dx \): \[ \frac{dt}{dx} = e^x \implies dx = \frac{dt}{e^x} \] From the substitution, we also have: \[ e^x = t - 1 \] Thus, we can rewrite \( dx \) as: \[ dx = \frac{dt}{t - 1} \] ### Step 2: Change the limits of integration When \( x = -a \): \[ t = 1 + e^{-a} \] When \( x = a \): \[ t = 1 + e^{a} \] So the integral becomes: \[ I = \int_{1 + e^{-a}}^{1 + e^{a}} \frac{t - 1}{t} \cdot \frac{dt}{t - 1} \] This simplifies to: \[ I = \int_{1 + e^{-a}}^{1 + e^{a}} \frac{1}{t} \, dt - \int_{1 + e^{-a}}^{1 + e^{a}} \frac{1}{t} \, dt \] ### Step 3: Evaluate the integral The integral can be split into two parts: \[ I = \int_{1 + e^{-a}}^{1 + e^{a}} \frac{1}{t} \, dt - \int_{1 + e^{-a}}^{1 + e^{a}} \frac{1}{t} \, dt \] Using the property of logarithms, we have: \[ I = \left[ \ln t \right]_{1 + e^{-a}}^{1 + e^{a}} = \ln(1 + e^{a}) - \ln(1 + e^{-a}) \] ### Step 4: Simplify using logarithmic properties Using the property of logarithms: \[ I = \ln \left( \frac{1 + e^{a}}{1 + e^{-a}} \right) \] We can rewrite \( 1 + e^{-a} \) as \( \frac{e^{a} + 1}{e^{a}} \): \[ I = \ln \left( \frac{(1 + e^{a}) e^{a}}{1 + e^{a}} \right) = \ln(e^{a}) = a \] ### Final Answer Thus, the value of the integral is: \[ \boxed{a} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

Find the value of integral A=int_(-a)^(a)(e^(x))/(1+ e^x)dx

The value of the integral int_-a^a (x e^(x^2))/(1+x^2)dx is (A) e^(a^2) (B) 0 (C) e^(-a^2) (D) a

The value of the integral int_(0)^(pi) (1)/(e^(cosx)+1)dx , is

The value of the integral int_(-1)^(1)(dx)/((1+x^(2))(1+e^(x)) is equal to

The value of the integral int_(0)^(1) e^(x^(2))dx lies in the integral

int_(0)^(log 2)(e^(x))/(1+e^(x))dx=

The value of the integral int_(-4)^(4)e^(|x|){x}dx is equal to (where {.} denotes the fractional part function)

The value of the integral int_(0)^(pi)(e^(|cosx|)sinx)/(1+e^(cotx))dx is equal to

The value of the integral int_0^(log5)(e^xsqrt(e^x-1))/(e^x+3)dx

The value of the integral int_(0)^(1) x(1-x)^(n)dx is -