Home
Class 12
MATHS
If f(x)={((sqrt(g(x))-1)/(sqrtx-1)"," , ...

If `f(x)={((sqrt(g(x))-1)/(sqrtx-1)"," , x ne 1),(1",",x=1):}` and `g'(1)=2, g(1)=1,` then `lim_(xrarr1)f(x)` is equal to

A

1

B

3

C

2

D

4

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the limit of the function \( f(x) \) as \( x \) approaches 1. The function is defined as: \[ f(x) = \begin{cases} \frac{\sqrt{g(x)} - 1}{\sqrt{x} - 1}, & x \neq 1 \\ 1, & x = 1 \end{cases} \] We are given that \( g'(1) = 2 \) and \( g(1) = 1 \). ### Step-by-step Solution: 1. **Identify the limit to evaluate:** We need to evaluate \( \lim_{x \to 1} f(x) \). Since \( f(x) \) is defined differently at \( x = 1 \), we will focus on the case when \( x \neq 1 \): \[ \lim_{x \to 1} f(x) = \lim_{x \to 1} \frac{\sqrt{g(x)} - 1}{\sqrt{x} - 1} \] 2. **Substitute \( x = 1 \):** If we directly substitute \( x = 1 \) into the limit, we get: \[ \frac{\sqrt{g(1)} - 1}{\sqrt{1} - 1} = \frac{\sqrt{1} - 1}{1 - 1} = \frac{0}{0} \] This is an indeterminate form \( \frac{0}{0} \), so we can apply L'Hôpital's Rule. 3. **Apply L'Hôpital's Rule:** According to L'Hôpital's Rule, we differentiate the numerator and the denominator: - The derivative of the numerator \( \sqrt{g(x)} - 1 \) is: \[ \frac{1}{2\sqrt{g(x)}} \cdot g'(x) \] - The derivative of the denominator \( \sqrt{x} - 1 \) is: \[ \frac{1}{2\sqrt{x}} \] Thus, we can rewrite the limit as: \[ \lim_{x \to 1} \frac{\frac{1}{2\sqrt{g(x)}} g'(x)}{\frac{1}{2\sqrt{x}}} \] 4. **Simplify the limit:** This simplifies to: \[ \lim_{x \to 1} \frac{g'(x) \cdot \sqrt{x}}{\sqrt{g(x)}} \] 5. **Evaluate the limit at \( x = 1 \):** Now we substitute \( x = 1 \): \[ = \frac{g'(1) \cdot \sqrt{1}}{\sqrt{g(1)}} = \frac{g'(1) \cdot 1}{\sqrt{1}} = g'(1) = 2 \] 6. **Conclusion:** Therefore, we find that: \[ \lim_{x \to 1} f(x) = 2 \] ### Final Answer: \[ \lim_{x \to 1} f(x) = 2 \]
Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(xrarr1)(1-x)tan((pix)/2) is equal to

lim_(xrarr1)(x^(m)-1)/(x^(n)-1) is equal to

If f(x) = 3x + 1 and g(x) = x^(2) - 1 , then (f + g) (x) is equal to

f(x)=1/abs(x), g(x)=sqrt(x^(-2))

lim_(xrarr1)(sqrt1-cos2(x-1))/(x-1) , is

If f(x)=|x-1|" and "g(x)=f(f(f(x))) , then for xgt2,g'(x) is equal to

If f(1) =g(1)=2 , then lim_(xrarr1) (f(1)g(x)-f(x)g(1)-f(1)+g(1))/(f(x)-g(x)) is equal to

If g(x)=1+sqrtx and f(g(x))=3+2sqrtx+x then f(x) is equal to

lim_(xrarr1)(sqrt(1+x)-sqrt(1-x))/(1+x) is equal to

Let f(x)=(1)/(x) and g(x)=(1)/(sqrt(x)) . Then,