Home
Class 12
MATHS
Let I(1)=int(0)^(1)(|lnx|)/(x^(2)+4x+1)d...

Let `I_(1)=int_(0)^(1)(|lnx|)/(x^(2)+4x+1)dx` and `I_(2)=int_(1)^(oo)(lnx)/(x^(2)+4x+1)dx`, then

A

`I_(1)=I_(2)`

B

`I_(1) gt I_(2)`

C

`I_(1)+I_(2)=0`

D

`I_(1)=2I_(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the integrals \( I_1 \) and \( I_2 \) and find the relationship between them. ### Step 1: Evaluate \( I_1 \) Given: \[ I_1 = \int_0^1 \frac{|\ln x|}{x^2 + 4x + 1} \, dx \] Since \( \ln x < 0 \) for \( x \in (0, 1) \), we can replace \( |\ln x| \) with \( -\ln x \): \[ I_1 = \int_0^1 \frac{-\ln x}{x^2 + 4x + 1} \, dx \] ### Step 2: Substitute \( x = \frac{1}{t} \) Let's use the substitution \( x = \frac{1}{t} \). Then, \( dx = -\frac{1}{t^2} \, dt \). The limits change as follows: - When \( x = 0 \), \( t \to \infty \) - When \( x = 1 \), \( t = 1 \) Thus, we have: \[ I_1 = \int_{\infty}^1 \frac{-\ln\left(\frac{1}{t}\right)}{\left(\frac{1}{t}\right)^2 + 4\left(\frac{1}{t}\right) + 1} \left(-\frac{1}{t^2}\right) dt \] This simplifies to: \[ I_1 = \int_1^{\infty} \frac{\ln t}{\frac{1}{t^2} + \frac{4}{t} + 1} \cdot \frac{1}{t^2} \, dt \] ### Step 3: Simplify the Denominator The denominator becomes: \[ \frac{1}{t^2} + \frac{4}{t} + 1 = \frac{1 + 4t + t^2}{t^2} \] Thus, we can rewrite \( I_1 \): \[ I_1 = \int_1^{\infty} \frac{\ln t}{\frac{1 + 4t + t^2}{t^2}} \cdot \frac{1}{t^2} \, dt = \int_1^{\infty} \frac{\ln t \cdot t^2}{1 + 4t + t^2} \cdot \frac{1}{t^2} \, dt \] This simplifies to: \[ I_1 = \int_1^{\infty} \frac{\ln t}{1 + 4t + t^2} \, dt \] ### Step 4: Recognize \( I_2 \) Now, we recognize that: \[ I_2 = \int_1^{\infty} \frac{\ln x}{x^2 + 4x + 1} \, dx \] ### Step 5: Conclude the Relationship From the previous steps, we have shown that: \[ I_1 = I_2 \] Thus, the final result is: \[ I_1 = I_2 \]
Promotional Banner

Similar Questions

Explore conceptually related problems

Let I_(1)=int_(1)^(2)(x)/(sqrt(1+x^(2)))dx and I_(2)=int_(1)^(2)(1)/(x)dx .Then

int_(0)^(1)(2x)/((1+x^(4)))dx

Let I_(1)=int_(0)^(oo)(x^(2)sqrtx)/((1+x)^(6))dx,I_(2)=int_(0)^(oo)(xsqrtx)/((1+x)^(6))dx , then

Consider I_(1)=int_(10)^(20)(lnx)/(lnx+ln(30-x))dx and I_(2)=int_(20)^(30)(lnx)/(lnx +ln(50-x))dx . Then, the value of (I_(1))/(I_(2)) is

int_(0)^(2) (1)/(4+x+x^(2))dx

If I_(1) =int _(0)^(1) (1+x ^(8))/(1+x^(4)) dx sand I_(2)=int _(0)^(1) (1+ x ^(9))/(1+x ^(2)) dx, then:

int(1)/(2x^(2)-4x+1)dx

Let I_(1) = int_(0)^(pi//4)1/((1+tanx)^(2))dx , I_(2) = int_(0)^(1)(dx)/((1+x)^(2)(1+x^(2))) Then find the value of (I_(1))/(I_(2)) .

Let I_(1)=int_(0)^(alpha)(1+2cosx)/(1+e^(x))dx and I_(2)=int_(0)^(alpha)(1+e^(x))/(1+2cosx)dx , where alpha is the root of the equation 2 cos x - e^(x)=0 . and alpha is positive Then,

If I=int_(0)^(1) (1)/(1+x^(pi//2))dx then