Home
Class 12
MATHS
The value of the integral int(x^(2)-4xsq...

The value of the integral `int(x^(2)-4xsqrtx+6x-4sqrtx+1)/(x-2sqrtx+1)`

A

`(x^((3)/(2)))/(2)+x+c`

B

`(x^(2))/(2)-(4)/(3)x^((3/(2)))+x+c`

C

`x^((3)/(2))+(x)/(2)+c`

D

`(2)/(3)x^((3)/(2))+c`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ \int \frac{x^2 - 4x\sqrt{x} + 6x - 4\sqrt{x} + 1}{x - 2\sqrt{x} + 1} \, dx, \] we will follow these steps: ### Step 1: Simplify the Integral First, we notice that the degree of the numerator is greater than the degree of the denominator. Therefore, we will perform polynomial long division. 1. **Divide the numerator by the denominator:** - The numerator is \(x^2 - 4x\sqrt{x} + 6x - 4\sqrt{x} + 1\). - The denominator is \(x - 2\sqrt{x} + 1\). ### Step 2: Perform Polynomial Long Division We will divide \(x^2 - 4x\sqrt{x} + 6x - 4\sqrt{x} + 1\) by \(x - 2\sqrt{x} + 1\). 1. **First term:** Divide \(x^2\) by \(x\) to get \(x\). 2. **Multiply:** \(x \cdot (x - 2\sqrt{x} + 1) = x^2 - 2x\sqrt{x} + x\). 3. **Subtract:** \[ (x^2 - 4x\sqrt{x} + 6x - 4\sqrt{x} + 1) - (x^2 - 2x\sqrt{x} + x) = -2x\sqrt{x} + 5x - 4\sqrt{x} + 1. \] ### Step 3: Continue the Division Now, we will divide \(-2x\sqrt{x} + 5x - 4\sqrt{x} + 1\) by \(x - 2\sqrt{x} + 1\). 1. **First term:** Divide \(-2x\sqrt{x}\) by \(x\) to get \(-2\sqrt{x}\). 2. **Multiply:** \(-2\sqrt{x} \cdot (x - 2\sqrt{x} + 1) = -2x\sqrt{x} + 4 + 2\sqrt{x}\). 3. **Subtract:** \[ (-2x\sqrt{x} + 5x - 4\sqrt{x} + 1) - (-2x\sqrt{x} + 4 + 2\sqrt{x}) = 5x - 4\sqrt{x} - 4 + 2\sqrt{x} + 1 = 5x - 2\sqrt{x} - 3. \] ### Step 4: Final Division Now we have \(5x - 2\sqrt{x} - 3\) to divide by \(x - 2\sqrt{x} + 1\). 1. **First term:** Divide \(5x\) by \(x\) to get \(5\). 2. **Multiply:** \(5 \cdot (x - 2\sqrt{x} + 1) = 5x - 10\sqrt{x} + 5\). 3. **Subtract:** \[ (5x - 2\sqrt{x} - 3) - (5x - 10\sqrt{x} + 5) = 8\sqrt{x} - 8. \] ### Step 5: Rewrite the Integral Now we can rewrite the integral as: \[ \int \left( x - 2\sqrt{x} + 5 + \frac{8(\sqrt{x} - 1)}{x - 2\sqrt{x} + 1} \right) \, dx. \] ### Step 6: Integrate Each Term Now we can integrate each term separately: 1. \(\int x \, dx = \frac{x^2}{2}\) 2. \(\int -2\sqrt{x} \, dx = -\frac{4}{3}x^{3/2}\) 3. \(\int 5 \, dx = 5x\) 4. The remaining term can be integrated using substitution or further simplification. ### Final Result Combining all these integrals, we have: \[ \int \frac{x^2 - 4x\sqrt{x} + 6x - 4\sqrt{x} + 1}{x - 2\sqrt{x} + 1} \, dx = \frac{x^2}{2} - \frac{4}{3}x^{3/2} + 5x + C. \]
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of the integral int_(-1)^(1) (x-[2x]) dx,is

The value of the integral int _0^oo 1/(1+x^4)dx is

The value of integral int_(-2)^(4) x[x]dx is

The value of the integral int_3^6 sqrtx/(sqrt(9-x)+sqrtx)dx is

The value of integral int_(2)^(4)(dx)/(x) is :-

int_(1)^(2)(dx)/(sqrtx-sqrt(x-1))

The value of the integral int(1+x^(2))/(1+x^(4))dx is equal to

If the integral I=int(x sqrtx-3x+3sqrtx-1)/(x-2sqrtx+1)dx=f(x)+C (where, x gt0 and C is the constant of integration) and f(1)=(-1)/(3) , then the value of f(9) is equal to

The value of definite integral int_0^(pi^2/4) dx/(1+sin sqrtx+ cos sqrtx)= is

The value of the integral int_(0)^(1)xcot^(-1)(1-x^(2)+x^(4)) dx is