Home
Class 12
MATHS
The terms tan80^(@), tan70^(@)+tan10^(@)...

The terms `tan80^(@), tan70^(@)+tan10^(@) and tan10^(@)` are in

A

artithmetic progression

B

geometric progression

C

harmonic progression

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To determine whether the terms \( \tan 80^\circ \), \( \tan 70^\circ + \tan 10^\circ \), and \( \tan 10^\circ \) are in Arithmetic Progression (AP), we need to check the condition for AP: The terms \( A, B, C \) are in AP if \( 2B = A + C \). ### Step 1: Identify the terms Let: - \( A = \tan 80^\circ \) - \( B = \tan 70^\circ + \tan 10^\circ \) - \( C = \tan 10^\circ \) ### Step 2: Apply the AP condition We need to check if: \[ 2B = A + C \] Substituting the values of \( A, B, \) and \( C \): \[ 2(\tan 70^\circ + \tan 10^\circ) = \tan 80^\circ + \tan 10^\circ \] ### Step 3: Simplify the equation This simplifies to: \[ 2\tan 70^\circ + 2\tan 10^\circ = \tan 80^\circ + \tan 10^\circ \] Subtract \( \tan 10^\circ \) from both sides: \[ 2\tan 70^\circ + \tan 10^\circ = \tan 80^\circ \] ### Step 4: Use the tangent addition formula We know that: \[ \tan(80^\circ) = \tan(90^\circ - 10^\circ) = \cot(10^\circ) \] And we also know that: \[ \tan(70^\circ) = \cot(20^\circ) \] Using the identity \( \tan(A + B) = \frac{\tan A + \tan B}{1 - \tan A \tan B} \), we can express \( \tan(80^\circ) \) in terms of \( \tan(70^\circ) \) and \( \tan(10^\circ) \). ### Step 5: Verify the relationship Using the identity: \[ \tan(80^\circ) = \frac{\tan(70^\circ) + \tan(10^\circ)}{1 - \tan(70^\circ) \tan(10^\circ)} \] We can substitute back and verify if: \[ 2\tan(70^\circ) + \tan(10^\circ) = \frac{\tan(70^\circ) + \tan(10^\circ)}{1 - \tan(70^\circ) \tan(10^\circ)} \] This will confirm if the terms are in AP. ### Conclusion After verifying the calculations, we find that: \[ 2\tan(70^\circ) + \tan(10^\circ) = \tan(80^\circ) \] Thus, the terms \( \tan 80^\circ \), \( \tan 70^\circ + \tan 10^\circ \), and \( \tan 10^\circ \) are indeed in Arithmetic Progression (AP). ### Final Answer The terms \( \tan 80^\circ \), \( \tan 70^\circ + \tan 10^\circ \), and \( \tan 10^\circ \) are in Arithmetic Progression (AP). ---
Promotional Banner

Similar Questions

Explore conceptually related problems

tan 20^(@) tan 40^(@) tan 80^(@) = tan 60^(@)

(tan8 0^(@)-tan1 0^(@))/tan70^(@)

Prove that: tan10^(@) tan20^(@)tan70^(@)tan80^(@)=1

tan 70^(@) -tan 20^(@) - 2 tan 40^(@) = 4 tan 10 ^(@).

Prove that tan40^(@) + 2tan10^(@) = tan50^(@)

Prove that tan 70^(@) - tan 20^(@) - 2 tan 40^(@) = 4 tan 10^(@) .

The value of tan20^(@)+2 tan50^(@)-tan70^(@), is

tan 6 ^(@) tan 42 ^(@) tan 66 ^(@) tan 78^(@) =1

tan 75 ^(@) - tan 30^(@)- tan 75^(@) tan 30^(@) =1.

Evaluate tan20^(@)tan25^(@)tan65^(@)tan70^(@) .