Home
Class 12
MATHS
If x=sect+tant and y=sect - tant, where ...

If `x=sect+tant and y=sect - tant`, where t is a parameter, then the value of `(dy)/(dx)` when `x=(1)/(sqrt3)` is

A

0

B

`-3`

C

`sqrt3`

D

`(1)/(sqrt3)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \(\frac{dy}{dx}\) given the equations \(x = \sec t + \tan t\) and \(y = \sec t - \tan t\) when \(x = \frac{1}{\sqrt{3}}\). ### Step-by-Step Solution: 1. **Set up the equations**: We have: \[ x = \sec t + \tan t \] \[ y = \sec t - \tan t \] 2. **Substitute the value of \(x\)**: We substitute \(x = \frac{1}{\sqrt{3}}\): \[ \frac{1}{\sqrt{3}} = \sec t + \tan t \] 3. **Use the identity**: We know that: \[ \sec^2 t - \tan^2 t = 1 \] This can be factored as: \[ (\sec t - \tan t)(\sec t + \tan t) = 1 \] Substituting \(x\) into the equation, we get: \[ y \cdot \frac{1}{\sqrt{3}} = 1 \] 4. **Solve for \(y\)**: Rearranging gives: \[ y = \frac{1}{\frac{1}{\sqrt{3}}} = \sqrt{3} \] 5. **Differentiate \(y\) and \(x\)**: We need to find \(\frac{dy}{dx}\). Using the chain rule: \[ \frac{dy}{dx} = \frac{dy/dt}{dx/dt} \] 6. **Differentiate \(y\)**: Differentiate \(y = \sec t - \tan t\): \[ \frac{dy}{dt} = \sec t \tan t - \sec^2 t \] 7. **Differentiate \(x\)**: Differentiate \(x = \sec t + \tan t\): \[ \frac{dx}{dt} = \sec t \tan t + \sec^2 t \] 8. **Substitute into \(\frac{dy}{dx}\)**: Now substituting into \(\frac{dy}{dx}\): \[ \frac{dy}{dx} = \frac{\sec t \tan t - \sec^2 t}{\sec t \tan t + \sec^2 t} \] 9. **Substitute known values**: We know: - \(y = \sqrt{3}\) (from step 4) - \(x = \frac{1}{\sqrt{3}}\) (from step 2) We can express \(\sec t + \tan t = \frac{1}{\sqrt{3}}\) and \(\sec t - \tan t = \sqrt{3}\). 10. **Find \(\sec t\) and \(\tan t\)**: Let: \[ \sec t + \tan t = \frac{1}{\sqrt{3}} \quad (1) \] \[ \sec t - \tan t = \sqrt{3} \quad (2) \] Adding (1) and (2): \[ 2\sec t = \frac{1}{\sqrt{3}} + \sqrt{3} \] \[ \sec t = \frac{1 + 3}{2\sqrt{3}} = \frac{2}{\sqrt{3}} \] Substituting \(\sec t\) back to find \(\tan t\): \[ \tan t = \sec t - \sqrt{3} = \frac{2}{\sqrt{3}} - \sqrt{3} \] 11. **Final calculation**: Substitute \(\sec t\) and \(\tan t\) into \(\frac{dy}{dx}\) and simplify: \[ \frac{dy}{dx} = \frac{\left(\frac{2}{\sqrt{3}} \cdot \tan t - \left(\frac{2}{\sqrt{3}}\right)^2\right)}{\left(\frac{2}{\sqrt{3}} \cdot \tan t + \left(\frac{2}{\sqrt{3}}\right)^2\right)} \] After simplification, we find that: \[ \frac{dy}{dx} = -3 \] Thus, the value of \(\frac{dy}{dx}\) when \(x = \frac{1}{\sqrt{3}}\) is \(-3\).
Promotional Banner

Similar Questions

Explore conceptually related problems

A curve is represented paramtrically by the equations x=e^(t)cost and y=e^(t)sint where t is a parameter. Then The value of (d^(2)y)/(dx^(2)) at the point where t=0 is

if y^x-x^y=1 then the value of (dy)/(dx) at x=1 is

If x=3cos t and y=5sint , where t is a parameter, then 9(d^(2)y)/(dx^(2)) at t=-(pi)/(6) is equal to

If x = 3 tant and y = 3 sec t, then the value of (d^2y)/(dx^2)" at" t=pi/4 is

If x = 2t^3 and y = 3t^2 , then value of (dy)/(dx) is

Find dy/dx if x=(sqrt y)/(sqrt y-1)

If x=cos t + (log tant)/2, y=sin t, then find the value of (d^2y)/(dt^2) and (d^2y)/(dx^2)  at t =pi/4.

If y=sec^(-1)(sqrt(1+x^(2))) , when -1 lt x lt 1, then find (dy)/(dx)

Find dy/dx if x=sqrt(1+y)

If square of x varies as cube of y and x=3 when y=4 , the value of y at (1)/(sqrt3) will be..