Home
Class 12
MATHS
Let p, q and r be three statements. Cons...

Let p, q and r be three statements. Consider two compound statements `S_(1):(prArr q)rArr r -= p rArr (q rArr r)` `S_(2):(p hArr q)hArrr -=phArr (q hArr r)` State in order, whether `S_(1), S_(2)` are true of false. (where, T represents true F represents false)

A

TT

B

TF

C

FT

D

FF

Text Solution

AI Generated Solution

The correct Answer is:
To determine the truth values of the compound statements \( S_1 \) and \( S_2 \), we will analyze each statement step by step. ### Step 1: Analyze \( S_1 \) The statement \( S_1 \) is given as: \[ S_1: (p \land q) \to r \quad \text{is equivalent to} \quad p \to (q \to r) \] We will use a truth table to evaluate this statement. #### Truth Table for \( S_1 \) | \( p \) | \( q \) | \( r \) | \( p \land q \) | \( (p \land q) \to r \) | \( q \to r \) | \( p \to (q \to r) \) | |---------|---------|---------|------------------|--------------------------|----------------|-----------------------| | T | T | T | T | T | T | T | | T | T | F | T | F | F | F | | T | F | T | F | T | T | T | | T | F | F | F | T | F | F | | F | T | T | F | T | T | T | | F | T | F | F | T | F | T | | F | F | T | F | T | T | T | | F | F | F | F | T | F | T | Now we compare the columns for \( (p \land q) \to r \) and \( p \to (q \to r) \): - The truth values for \( (p \land q) \to r \) are: T, F, T, T, T, T, T, T - The truth values for \( p \to (q \to r) \) are: T, F, T, F, T, T, T, T Since these two columns are not identical, \( S_1 \) is **False**. ### Step 2: Analyze \( S_2 \) The statement \( S_2 \) is given as: \[ S_2: (p \leftrightarrow q) \to r \quad \text{is equivalent to} \quad p \leftrightarrow (q \leftrightarrow r) \] Again, we will create a truth table for this statement. #### Truth Table for \( S_2 \) | \( p \) | \( q \) | \( r \) | \( p \leftrightarrow q \) | \( (p \leftrightarrow q) \to r \) | \( q \leftrightarrow r \) | \( p \leftrightarrow (q \leftrightarrow r) \) | |---------|---------|---------|-----------------------------|------------------------------------|----------------------------|-----------------------------------------------| | T | T | T | T | T | T | T | | T | T | F | T | F | F | F | | T | F | T | F | T | F | F | | T | F | F | F | T | T | T | | F | T | T | F | T | T | F | | F | T | F | F | T | F | T | | F | F | T | T | T | F | F | | F | F | F | T | F | T | T | Now we compare the columns for \( (p \leftrightarrow q) \to r \) and \( p \leftrightarrow (q \leftrightarrow r) \): - The truth values for \( (p \leftrightarrow q) \to r \) are: T, F, T, T, T, T, T, F - The truth values for \( p \leftrightarrow (q \leftrightarrow r) \) are: T, F, F, T, F, T, F, T Since these two columns are not identical, \( S_2 \) is also **False**. ### Final Conclusion - \( S_1 \) is **False** - \( S_2 \) is **False**
Promotional Banner

Similar Questions

Explore conceptually related problems

Let p, q and r be three statements, then (~p to q) to r is equivalent to

The converse of p rArr (q rArr r) is

STATEMENT-1 : ~(phArrq)=~phArrq=phArr~q and STATEMENT-2 : (phArrq)hArrr=p hArr(q hArrr)

The compound statement (phArr q)vv(p hArr ~q) is logically equivalent to

If p, q and r are three logical statements then the truth value of the statement (p^^~q)vv(qrarr r) , where p is true, is

If p, q are r are three logical statements, then the truth value of the statement (p^^q)vv (~q rarr r) , where p is true, is

Given the following two statements S_(1) : (p ^^ : p) rarr (p ^^ q) is a tautology. S_(2) : (p vv : p) rarr (p vv q) is a fallacy

Let P, Q, R and S be statement and suppose that P rarr Q rarr R rarr P . If ~S rarr R , then

Let p and q be any two propositons Statement 1 : (p rarr q) harr q vv ~p is a tautology Statement 2 : ~(~p ^^ q) ^^ (p vv q) harr p is fallacy

If the statements (p^^~r) to (qvvr) , q and r are all false, then p