Home
Class 12
MATHS
If A and B are non - singular matrices o...

If A and B are non - singular matrices of order three such that `adj(AB)=[(1,1,1),(1,alpha, 1),(1,1,alpha)] and |B^(2)adjA|=alpha^(2)+3alpha-8`, then the value of `alpha` is equal to

A

`(9)/(5)`

B

`(8)/(5)`

C

3

D

2

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

If 0 lt alpha lt (pi)/(16) and (1+tan alpha)(1+tan4alpha)=2 , then the value of alpha is equal to

If A=|[alpha,2], [2,alpha]| and |A|^3=125 , then the value of alpha is a. +-1 b. +-2 c. +-3 d. +-5

If A and B are two non-singular matrices of order 3 such that A A^(T)=2I and A^(-1)=A^(T)-A . Adj. (2B^(-1)) , then det. (B) is equal to

Let A =[(1,-1,1),(2,1,-3),(1,1,1)] and 10B=[(4,2,2),(-5,0,alpha),(1,-2,3)] . If B is the inverse of A, then alpha is :

Let alpha be a root of the equation x ^(2) + x + 1 = 0 and the matrix A = ( 1 ) /(sqrt3) [{:( 1,,1,,1),( 1,, alpha ,, alpha ^(2)), ( 1 ,, alpha ^(2),, alpha ^(4)):}] then the matrix A ^( 31 ) is equal to :

if (1+tan alpha )(1+tan4 alpha ) =2 where alpha in (0 , pi/16 ) then alpha equal to

If (2 sin alpha)/(1 + cos alpha + sin alpha) = 3/4 , then the value of (1 - cos alpha + sinalpha)/(1 + sin alpha) is equal to

Let alpha be a root of the equation x ^(2) - x+1=0, and the matrix A=[{:(1,1,1),(1, alpha , alpha ^(2)), (1, alpha ^(2), alpha ^(4)):}] and matrix B= [{:(1,-1, -1),(1, alpha, - alpha ^(2)),(-1, -alpha ^(2), - alpha ^(4)):}] then the vlaue of |AB| is:

If alpha is a non-real cube root of -2 , then the value of |(1,2 alpha,1),(alpha^(2),1,3 alpha^(2)),(2,2 alpha,1)| , is

First row of a matrix A is [1,3,2] . If adj A=[(-2,4,alpha),(-1,2,1),(3alpha,-5,-2)] , then a det (A) is