Home
Class 12
MATHS
If the planes vecr.(hati+hatj+hatk)=1, v...

If the planes `vecr.(hati+hatj+hatk)=1, vecr.(hati+2ahatj+hatk)=2 and vecr. (ahati+a^(2)hatj+hatk)=3` intersect in a line, then the possible number of real values of a is

A

1

B

2

C

4

D

0

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the given planes and determine the conditions under which they intersect in a line. The planes are defined by the following equations: 1. \( \vec{r} \cdot (\hat{i} + \hat{j} + \hat{k}) = 1 \) 2. \( \vec{r} \cdot (\hat{i} + 2a \hat{j} + \hat{k}) = 2 \) 3. \( \vec{r} \cdot (a \hat{i} + a^2 \hat{j} + \hat{k}) = 3 \) ### Step 1: Identify the normal vectors of the planes The normal vectors of the planes can be extracted from the coefficients of \( \vec{r} \): - For the first plane, the normal vector \( \vec{n_1} = \hat{i} + \hat{j} + \hat{k} \) or \( (1, 1, 1) \). - For the second plane, the normal vector \( \vec{n_2} = \hat{i} + 2a \hat{j} + \hat{k} \) or \( (1, 2a, 1) \). - For the third plane, the normal vector \( \vec{n_3} = a \hat{i} + a^2 \hat{j} + \hat{k} \) or \( (a, a^2, 1) \). ### Step 2: Condition for intersection in a line For three planes to intersect in a line, the normal vectors must not be coplanar. This can be checked using the scalar triple product, which can be represented as the determinant of a matrix formed by the normal vectors: \[ \begin{vmatrix} 1 & 1 & 1 \\ 1 & 2a & 1 \\ a & a^2 & 1 \end{vmatrix} = 0 \] ### Step 3: Calculate the determinant To compute the determinant, we can expand it: \[ D = 1 \cdot \begin{vmatrix} 2a & 1 \\ a^2 & 1 \end{vmatrix} - 1 \cdot \begin{vmatrix} 1 & 1 \\ a & 1 \end{vmatrix} + 1 \cdot \begin{vmatrix} 1 & 2a \\ a & a^2 \end{vmatrix} \] Calculating each of these 2x2 determinants: 1. \( \begin{vmatrix} 2a & 1 \\ a^2 & 1 \end{vmatrix} = 2a \cdot 1 - 1 \cdot a^2 = 2a - a^2 \) 2. \( \begin{vmatrix} 1 & 1 \\ a & 1 \end{vmatrix} = 1 \cdot 1 - 1 \cdot a = 1 - a \) 3. \( \begin{vmatrix} 1 & 2a \\ a & a^2 \end{vmatrix} = 1 \cdot a^2 - 2a \cdot a = a^2 - 2a^2 = -a^2 \) Putting it all together: \[ D = 1(2a - a^2) - 1(1 - a) + 1(-a^2) = 2a - a^2 - 1 + a - a^2 \] Combining like terms: \[ D = -2a^2 + 3a - 1 \] ### Step 4: Set the determinant to zero To find the values of \( a \) for which the planes intersect in a line, we set the determinant equal to zero: \[ -2a^2 + 3a - 1 = 0 \] ### Step 5: Solve the quadratic equation We can solve this quadratic equation using the quadratic formula \( a = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \): Here, \( a = -2, b = 3, c = -1 \): \[ D = 3^2 - 4(-2)(-1) = 9 - 8 = 1 \] Thus, \[ a = \frac{-3 \pm \sqrt{1}}{2(-2)} = \frac{-3 \pm 1}{-4} \] Calculating the two possible values: 1. \( a = \frac{-3 + 1}{-4} = \frac{-2}{-4} = \frac{1}{2} \) 2. \( a = \frac{-3 - 1}{-4} = \frac{-4}{-4} = 1 \) ### Conclusion The possible values of \( a \) are \( \frac{1}{2} \) and \( 1 \). Therefore, the number of real values of \( a \) is: **Answer: 2**
Promotional Banner

Similar Questions

Explore conceptually related problems

If the planes vecr.(hati+hatj+hatk)=q_(1),vecr.(hati+2ahatj+hatk)=q_(2)andvecr.(ahati+a^(2)hatj+hatk)=q_(3) intersect in a line, then the value of a is

If the planes vecr.(2hati-hatj+2hatk)=4 and vecr.(3hati+2hatj+lamda hatk)=3 are perpendicular then lamda=

The angle between the planes vecr.(2hati-hatj+hatk)=6 and vecr.(hati+hatj+2hatk)=5 is

Find the line of intersection of the planes vecr.(3hati-hatj+hatk)=1 and vecr.(hati+4hatj-2hatk)=2

Find the angle between the planes vecr.(hati+hatj-2hatk)=3 and vecr.(2hati-2hatj+hatk)=2 2

The angle between the planes vecr. (2 hati - 3 hatj + hatk) =1 and vecr. (hati - hatj) =4 is

The distance between the planes given by vecr.(hati+2hatj-2hatk)+5=0 and vecr.(hati+2hatj-2hatk)-8=0 is

Angle between the line vecr=(2hati-hatj+hatk)+lamda(-hati+hatj+hatk) and the plane vecr.(3hati+2hatj-hatk)=4 is

If vecr=(hati+2hatj+3hatk)+lambda(hati-hatj+hatk) and vecr=(hati+2hatj+3hatk)+mu(hati+hatj-hatk) are two lines, then the equation of acute angle bisector of two lines is

If the line vecr = (2hati+ hatj - hatk) + lambda(hati+mhatj-2hatk) is parallel to the plane vecr.(2hati+hatj+mhatk) = 1 then find the value of m.