Home
Class 12
MATHS
If the arguments of (1-i)(sqrt3+i)(1+sqr...

If the arguments of `(1-i)(sqrt3+i)(1+sqrt3i)` and `(Z-2)(barZ-1)` are equal, then the locus to Z is part of a circle with centre (a, b). The value of `(1)/(a+b)` is

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the locus of \( Z \) such that the arguments of the complex numbers \( (1 - i)(\sqrt{3} + i)(1 + \sqrt{3}i) \) and \( (Z - 2)(\overline{Z} - 1) \) are equal. ### Step-by-step Solution: 1. **Calculate the argument of \( (1 - i)(\sqrt{3} + i)(1 + \sqrt{3}i) \)**: - First, calculate \( (1 - i)(\sqrt{3} + i) \): \[ (1 - i)(\sqrt{3} + i) = 1 \cdot \sqrt{3} + 1 \cdot i - i \cdot \sqrt{3} - i^2 = \sqrt{3} + i - i\sqrt{3} + 1 \] \[ = (\sqrt{3} + 1) + (1 - \sqrt{3})i \] - Next, multiply this result by \( (1 + \sqrt{3}i) \): \[ ((\sqrt{3} + 1) + (1 - \sqrt{3})i)(1 + \sqrt{3}i) \] - Expand this product: \[ = (\sqrt{3} + 1) + (\sqrt{3} + 1)\sqrt{3}i + (1 - \sqrt{3})i + (1 - \sqrt{3})\sqrt{3}i^2 \] \[ = (\sqrt{3} + 1) + (\sqrt{3} + 1)\sqrt{3}i + (1 - \sqrt{3})i - (1 - \sqrt{3})\sqrt{3} \] \[ = (\sqrt{3} + 1 - (1 - \sqrt{3})\sqrt{3}) + ((\sqrt{3} + 1) + (1 - \sqrt{3}))i \] - Simplifying gives: \[ = (2 + 2\sqrt{3}) + (2)i \] 2. **Find the argument**: - The argument of a complex number \( a + bi \) is given by \( \tan^{-1}(\frac{b}{a}) \). - Here, \( a = 2 + 2\sqrt{3} \) and \( b = 2 \): \[ \text{arg} = \tan^{-1}\left(\frac{2}{2 + 2\sqrt{3}}\right) \] 3. **Calculate the argument of \( (Z - 2)(\overline{Z} - 1) \)**: - Let \( Z = x + iy \), then \( \overline{Z} = x - iy \): \[ (Z - 2)(\overline{Z} - 1) = ((x - 2) + iy)((x - 1) - iy) \] - Expanding this gives: \[ = (x - 2)(x - 1) + (x - 2)(-iy) + iy(x - 1) - y^2 \] \[ = (x^2 - 3x + 2 - y^2) + i(-y(x - 1) + y(x - 2)) \] - The imaginary part simplifies to: \[ = -y + y = 0 \] - Thus, the argument is: \[ \tan^{-1}\left(\frac{0}{x^2 - 3x + 2 - y^2}\right) = 0 \text{ (if } x^2 - 3x + 2 - y^2 \neq 0\text{)} \] 4. **Set the arguments equal**: - Set the arguments equal: \[ \tan^{-1}\left(\frac{2}{2 + 2\sqrt{3}}\right) = 0 \] - This implies: \[ 2 + 2\sqrt{3} \text{ must be } 0 \text{ which is not possible.} \] 5. **Find the locus**: - From the equality of arguments, we can derive the equation: \[ x^2 + y^2 - 3x + 2 - y = 0 \] - Rearranging gives: \[ x^2 + y^2 - 3x - y + 2 = 0 \] 6. **Complete the square**: - Completing the square for \( x \): \[ (x - \frac{3}{2})^2 + (y - \frac{1}{2})^2 = \frac{9}{4} + \frac{1}{4} - 2 \] - This simplifies to: \[ (x - \frac{3}{2})^2 + (y - \frac{1}{2})^2 = \frac{1}{4} \] 7. **Identify the center**: - The center of the circle is \( \left(\frac{3}{2}, \frac{1}{2}\right) \). - Thus, \( a = \frac{3}{2} \) and \( b = \frac{1}{2} \). 8. **Calculate \( \frac{1}{a + b} \)**: - \( a + b = \frac{3}{2} + \frac{1}{2} = 2 \). - Therefore, \( \frac{1}{a + b} = \frac{1}{2} \). ### Final Answer: \[ \frac{1}{a + b} = \frac{1}{2} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

For a complex number Z, if the argument of 3+3i and (Z-2) (bar(Z)-1) are equal, then the maximum distance of Z from the x - axis is equal to (where, i^(2)=-1 )

Prove that locus of z is a circle and find its centre and radius if (z-i)/(z-1) is purely imaginary.

For a complex number Z, if the argument of (Z-a)(barZ-b) is (pi)/(4) or (-3pi)/(4) (where a, b are two real numbers), then the value of ab such that the locus of Z represents a circle with centre (3)/(2)+(i)/(2) is (where, i^(2)=-1 )

if |z-2i| le sqrt2 , then the maximum value of |3+i(z-1)| is :

If z=(1+i)/sqrt2 , then the value of z^1929 is

If the real part of (barz +2)/(barz-1) is 4, then show that the locus of the point representing z in the complex plane is a circle.

If the argument of (z-a)(barz-b) is equal to that ((sqrt(3)+i)(1+sqrt(3)i)/(1+i)) where a,b,c are two real number and z is the complex conjugate o the complex number z find the locus of z in the rgand diagram. Find the value of a and b so that locus becomes a circle having its centre at 1/2(3+i)

If (1+i)z=(1-i) barz , then show that z=-i barz dot

If the ratio (z-i)/(z-1) is purely imaginary, prove that the point z lies on the circle whose centre is the point (1)/(2) (1+i) and radius is (1)/(sqrt2)

Given the complex number z= (-1 + sqrt3i)/(2) and w= (-1- sqrt3i)/(2) (where i= sqrt-1 ) Calculate the modulus and argument of w and z