Home
Class 12
MATHS
Let veca=hati+2hatj+3hatk, vecb=2hati+3h...

Let `veca=hati+2hatj+3hatk`, `vecb=2hati+3hatj+hatk, vecc=hatk+hati and (vecx xx vecb)=(veca xx vecc)xxvecb`. If `vecx .veca=0` , then `|vecx|` is equal to use `sqrt3=1.73`)``

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we will follow these steps: ### Step 1: Define the vectors We are given: - \(\vec{a} = \hat{i} + 2\hat{j} + 3\hat{k}\) - \(\vec{b} = 2\hat{i} + 3\hat{j} + \hat{k}\) - \(\vec{c} = \hat{k} + \hat{i}\) ### Step 2: Express \(\vec{x}\) Let \(\vec{x} = x_x \hat{i} + x_y \hat{j} + x_z \hat{k}\). ### Step 3: Use the dot product condition We know that \(\vec{x} \cdot \vec{a} = 0\). Therefore, \[ \vec{x} \cdot \vec{a} = (x_x \hat{i} + x_y \hat{j} + x_z \hat{k}) \cdot (\hat{i} + 2\hat{j} + 3\hat{k}) = x_x + 2x_y + 3x_z = 0 \] This gives us our first equation: \[ x_x + 2x_y + 3x_z = 0 \quad \text{(Equation 1)} \] ### Step 4: Use the cross product condition We are given that \(\vec{x} \times \vec{b} = (\vec{a} \times \vec{c}) \times \vec{b}\). First, we need to find \(\vec{a} \times \vec{c}\): \[ \vec{a} \times \vec{c} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & 2 & 3 \\ 1 & 0 & 1 \end{vmatrix} \] Calculating the determinant: \[ = \hat{i}(2 \cdot 1 - 3 \cdot 0) - \hat{j}(1 \cdot 1 - 3 \cdot 1) + \hat{k}(1 \cdot 0 - 2 \cdot 1) \] \[ = 2\hat{i} - (1 - 3)\hat{j} - 2\hat{k} = 2\hat{i} + 2\hat{j} - 2\hat{k} \] Thus, \(\vec{a} \times \vec{c} = 2\hat{i} + 2\hat{j} - 2\hat{k}\). ### Step 5: Substitute into the cross product equation Now, substituting into the equation: \[ \vec{x} \times \vec{b} = (2\hat{i} + 2\hat{j} - 2\hat{k}) \times \vec{b} \] Let’s calculate \((2\hat{i} + 2\hat{j} - 2\hat{k}) \times (2\hat{i} + 3\hat{j} + \hat{k})\): \[ = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 2 & 2 & -2 \\ 2 & 3 & 1 \end{vmatrix} \] Calculating the determinant: \[ = \hat{i}(2 \cdot 1 - (-2) \cdot 3) - \hat{j}(2 \cdot 1 - (-2) \cdot 2) + \hat{k}(2 \cdot 3 - 2 \cdot 2) \] \[ = \hat{i}(2 + 6) - \hat{j}(2 + 4) + \hat{k}(6 - 4) \] \[ = 8\hat{i} - 6\hat{j} + 2\hat{k} \] ### Step 6: Set up the equation Now we have: \[ \vec{x} \times \vec{b} = 8\hat{i} - 6\hat{j} + 2\hat{k} \] Since \(\vec{x} \times \vec{b} = \lambda \vec{b}\) for some scalar \(\lambda\), we can express this as: \[ \vec{x} - (2\hat{i} + 2\hat{j} - 2\hat{k}) = \lambda (2\hat{i} + 3\hat{j} + \hat{k}) \] ### Step 7: Solve for \(\vec{x}\) From the previous equations, we can express \(\vec{x}\) in terms of \(\lambda\): \[ \vec{x} = \lambda(2\hat{i} + 3\hat{j} + \hat{k}) + (2\hat{i} + 2\hat{j} - 2\hat{k}) \] ### Step 8: Find the magnitude of \(\vec{x}\) To find \(|\vec{x}|\): \[ |\vec{x}| = \sqrt{(2 + 2\lambda)^2 + (2 + 3\lambda)^2 + (-2 + \lambda)^2} \] ### Step 9: Substitute values and solve Substituting \(\lambda = 0\) (as derived from previous steps): \[ |\vec{x}| = \sqrt{(2)^2 + (2)^2 + (-2)^2} = \sqrt{4 + 4 + 4} = \sqrt{12} = 2\sqrt{3} \] ### Final Step: Use the value of \(\sqrt{3}\) Using \(\sqrt{3} \approx 1.73\): \[ |\vec{x}| \approx 2 \times 1.73 = 3.46 \] Thus, the magnitude \(|\vec{x}|\) is approximately \(3.46\).
Promotional Banner

Similar Questions

Explore conceptually related problems

Let veca=2hati+3hatj+4hatk, vecb=hati-2hatj+hatk and vecc=hati+hatj-hatk. If vecr xx veca =vecb and vecr.vec c=3, then the value of |vecr| is equal to

If veca=7hati+3hatj-6hatk , vecb=2hati+5hatj-hatk and vecc=-hati+2hatj+4hatk . Find (veca-vecb)xx(vecc-vecb) .

If veca=2hati+3hatj+hatk, vecb=hati-2hatj+hatk and vecc=-3hati+hatj+2hatk , then [veca vecb vecc]=

If veca=2hati+3hatj+hatk, vecb=hati-2hatj+hatk and vecc=-3hati+hatj+2hatk , then [veca vecb vecc]=

If vecaa=hati+2hatj+3hatk, vecb=2hati-hatj+hatk and vecc=hati+hatj-2hatk, verify that vecaxx(vecbxxvecc)=(veca.vecc)vecb-(veca.vecb)vecc.

If veca = 2hati -3hatj-1hatk and vecb =hati + 4hatj -2hatk " then " veca xx vecb is

if veca=hati-hatj-3hatk, vecb=4hati-3hatj+hatk and vecc=2hati+hatj+2hatk, verify that vecaxx(vecb+vecc)=vecaxxvecb+vecaxxvecc

Let veca = hati + hatj +hatjk, vecc =hatj - hatk and a vector vecb be such that veca xx vecb = vecc and veca.vecb=3 . Then |vecb| equals:

If veca = hati+hatj-2hatk, vecb=2hati-3hatj+hatk the value of (2veca+3vecb) . (2vecbxx3veca) is :

Let veca=hati-hatj,vecb=hati+hatj+hatk and vecc be a vector such that vecaxxvecc+vecb=vec0 and veca.vecc=4 , then |vecc|^(2) is equal to: