Home
Class 12
MATHS
Let f(x)={{:(a,","x=(pi)/(2)),((sqrt(2x-...

Let `f(x)={{:(a,","x=(pi)/(2)),((sqrt(2x-pi))/(sqrt(9+sqrt(2x-pi))-b),","xgt(pi)/(2)):}`. If `f(x)` is continuous at `x=(pi)/(2)`, then the value of `(a^(2))/(5b)` is

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to ensure that the function \( f(x) \) is continuous at \( x = \frac{\pi}{2} \). The function is defined as follows: \[ f(x) = \begin{cases} a & \text{if } x = \frac{\pi}{2} \\ \frac{\sqrt{2x - \pi}}{\sqrt{9 + \sqrt{2x - \pi}} - b} & \text{if } x > \frac{\pi}{2} \end{cases} \] ### Step 1: Set up the continuity condition For \( f(x) \) to be continuous at \( x = \frac{\pi}{2} \), we need: \[ \lim_{x \to \frac{\pi}{2}} f(x) = f\left(\frac{\pi}{2}\right) = a \] ### Step 2: Calculate the limit We need to evaluate the limit: \[ \lim_{x \to \frac{\pi}{2}} \frac{\sqrt{2x - \pi}}{\sqrt{9 + \sqrt{2x - \pi}} - b} \] ### Step 3: Substitute \( x = \frac{\pi}{2} \) As \( x \) approaches \( \frac{\pi}{2} \), \( 2x - \pi \) approaches \( 0 \). Thus, we can rewrite the limit: \[ \lim_{x \to \frac{\pi}{2}} \frac{\sqrt{2x - \pi}}{\sqrt{9 + \sqrt{2x - \pi}} - b} \] ### Step 4: Rationalize the denominator To simplify the limit, we will multiply the numerator and the denominator by the conjugate of the denominator: \[ \lim_{x \to \frac{\pi}{2}} \frac{\sqrt{2x - \pi} \cdot (\sqrt{9 + \sqrt{2x - \pi}} + b)}{(\sqrt{9 + \sqrt{2x - \pi}} - b)(\sqrt{9 + \sqrt{2x - \pi}} + b)} \] This simplifies to: \[ \lim_{x \to \frac{\pi}{2}} \frac{\sqrt{2x - \pi} \cdot (\sqrt{9 + \sqrt{2x - \pi}} + b)}{9 + \sqrt{2x - \pi} - b^2} \] ### Step 5: Evaluate the limit As \( x \to \frac{\pi}{2} \), \( \sqrt{2x - \pi} \to 0 \): \[ = \frac{0 \cdot (\sqrt{9 + 0} + b)}{9 + 0 - b^2} = 0 \] For the limit to equal \( a \), we need: \[ a = 0 \] ### Step 6: Determine \( b \) To ensure the limit exists, the denominator must not equal zero. Thus, we require: \[ 9 - b^2 \neq 0 \implies b^2 \neq 9 \implies b \neq 3 \text{ and } b \neq -3 \] ### Step 7: Find values of \( a \) and \( b \) We can choose \( b = 3 \) (or \( b = -3 \)) to simplify calculations. Let's take \( b = 3 \): Substituting \( b = 3 \) into the limit: \[ \lim_{x \to \frac{\pi}{2}} \frac{\sqrt{2x - \pi} \cdot (\sqrt{9 + \sqrt{2x - \pi}} + 3)}{9 + \sqrt{2x - \pi} - 9} = \lim_{x \to \frac{\pi}{2}} \frac{\sqrt{2x - \pi} \cdot (\sqrt{9 + \sqrt{2x - \pi}} + 3)}{\sqrt{2x - \pi}} \] This cancels to: \[ \sqrt{9 + 0} + 3 = 3 + 3 = 6 \] Thus, \( a = 6 \). ### Step 8: Calculate \( \frac{a^2}{5b} \) Now, we can find \( \frac{a^2}{5b} \): \[ \frac{a^2}{5b} = \frac{6^2}{5 \cdot 3} = \frac{36}{15} = \frac{12}{5} = 2.4 \] ### Final Answer Thus, the value of \( \frac{a^2}{5b} \) is: \[ \boxed{2.4} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)={(((1-sin^(3)x))/(3cos^(2)x)",",x lt (pi)/(2)),(a",",x=(pi)/(2)),((b(1-sinx))/((pi-2x)^(2))",",x gt (pi)/(2)):} is continuous at x=(pi)/(2) , then the value of ((b)/(a))^(5//3) is

If f(x)={{:(mx+1",",xle(pi)/(2)),(sinx+n",",xge (pi)/(2)):} is continuous at x=(pi)/(2) , then

If f(x)=[{:(mx+1,if x le (pi)/(2)),(sinx+n,ifxgt(pi)/(2)):} is continuous at x = (pi)/(2) , then

Let f(0,pi) to R be defined as f(x)={{:(,(1-sinx)/((pi-2x)^(2)).(In sin x)/((In(1+pi^(2)-4pix+4x^(2)))),x ne (pi)/(2)),(,k,x=(pi)/(2)):} If a continuous at x=(pi)/(2) , then the value of 8sqrt|k|,is

Let f(x)={{:(((1-cosx)/((2pi-x)^(2)))((sin^(2)x)/(log(1+4pi^(2)-4pix+x^(2)))),:,xne2pi),(" "lambda,:,x=2pi):} is continuous at x=2pi , then the value of lambda is equal to

If f(x)={{:((1-sqrt2sinx)/(pi-4x)",",ifxne(pi)/(4)),(a",",if x=(pi)/(4)):} in continuous at (pi)/(4) , then a is equal to :

If f(x)={m x+1,xlt=pi/2sinx+n ,x >pi/2 is continuous at x=pi/2, then

Let f(x) = {{:(-2 sin x,"for",-pi le x le - (pi)/(2)),(a sin x + b,"for",-(pi)/(2) lt x lt (pi)/(2)),(cos x,"for",(pi)/(2) le x le pi):} . If f is continuous on [-pi, pi) , then find the values of a and b .

Let f(x)=sinx+2cos^2x , x in [pi/6,(2pi)/3] , then maximum value of f(x) is

If f(x)={((sin(cosx)-cosx)/((pi-2x)^2) ,, x!=pi/2),(k ,, x=pi/2):} is continuous at x=pi/2, then k is equal to