Home
Class 12
MATHS
If s(n)=sum(r=0)^(n)(1)/(.^(n)C(r))and t...

If `s_(n)=sum_(r=0)^(n)(1)/(.^(n)C_(r))and t_(n)=sum_(r=0)^(n)(r)/(.^(n)C_(r))`, then `(t_(n))/(s_(n))` is equal to

A

`n-1`

B

`(1)/(2)n-1`

C

`(1)/(2)n`

D

`(2n-1)/(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( \frac{t_n}{s_n} \) where \[ s_n = \sum_{r=0}^{n} \frac{1}{\binom{n}{r}} \] and \[ t_n = \sum_{r=0}^{n} \frac{r}{\binom{n}{r}}. \] ### Step 1: Express \( t_n \) in a different form We start with the expression for \( t_n \): \[ t_n = \sum_{r=0}^{n} \frac{r}{\binom{n}{r}}. \] We can rewrite \( r \) as \( n - (n - r) \): \[ t_n = \sum_{r=0}^{n} \frac{n - (n - r)}{\binom{n}{r}} = \sum_{r=0}^{n} \frac{n}{\binom{n}{r}} - \sum_{r=0}^{n} \frac{n - r}{\binom{n}{r}}. \] ### Step 2: Use the symmetry property of binomial coefficients Using the property \( \binom{n}{r} = \binom{n}{n-r} \), we can rewrite the second sum: \[ \sum_{r=0}^{n} \frac{n - r}{\binom{n}{r}} = \sum_{r=0}^{n} \frac{n - r}{\binom{n}{n - r}} = \sum_{r=0}^{n} \frac{n - r}{\binom{n}{r}}. \] This means we can express \( t_n \) as: \[ t_n = \sum_{r=0}^{n} \frac{n}{\binom{n}{r}} - \sum_{r=0}^{n} \frac{n - r}{\binom{n}{r}}. \] ### Step 3: Combine the two expressions Adding both expressions for \( t_n \): \[ 2t_n = \sum_{r=0}^{n} \left( \frac{r}{\binom{n}{r}} + \frac{n - r}{\binom{n}{r}} \right) = \sum_{r=0}^{n} \frac{n}{\binom{n}{r}}. \] Thus, we have: \[ 2t_n = n \sum_{r=0}^{n} \frac{1}{\binom{n}{r}} = n s_n. \] ### Step 4: Solve for \( t_n \) From the equation \( 2t_n = n s_n \), we can express \( t_n \): \[ t_n = \frac{n s_n}{2}. \] ### Step 5: Calculate \( \frac{t_n}{s_n} \) Now, we can find \( \frac{t_n}{s_n} \): \[ \frac{t_n}{s_n} = \frac{\frac{n s_n}{2}}{s_n} = \frac{n}{2}. \] ### Final Answer Thus, the value of \( \frac{t_n}{s_n} \) is: \[ \frac{t_n}{s_n} = \frac{n}{2}. \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If sum_(r=0)^(n) (r)/(""^(n)C_(r))= sum_(r=0)^(n) (n^(2)-3n+3)/(2.""^(n)C_(r)) , then

If a_(n) = sum_(r=0)^(n) (1)/(""^(n)C_(r)) , find the value of sum_(r=0)^(n) (r)/(""^(n)C_(r))

If S_n=sum_(r=0)^n 1/(nC_r) and t_n=sum_(r=0)^n r/(nC_r), then t_n/S_n=

f(n)=sum_(r=1)^(n) [r^(2)(""^(n)C_(r)-""^(n)C_(r-1))+(2r+1)(""^(n)C_(r ))] , then

If S_(n) = underset (r=0) overset( n) sum (1) /(""^(n) C_(r)) and T_(n) = underset(r=0) overset(n) sum (r )/(""^(n) C_(r)) then (t_(n))/(s_(n)) = ?

If s_n=sum_(r < s) (1/(nC_r)+1/(nC_s)) and t_n=sum_(r < s)(r/(nC_r)+s/(nC_s)), then t_n/s_n=

If a_n=sum_(r=0)^n1/(nC_r), then sum_(r=0)^n r/(nC_r) equals

Let n in N, S_n=sum_(r=0)^(3n)^(3n)C_r and T_n=sum_(r=0)^n^(3n)C_(3r) , then |S_n-3T_n| equals

Let T_(n) = sum_(r=1)^(n) (n)/(r^(2)-2r.n+2n^(2)), S_(n) = sum_(r=0)^(n)(n)/(r^(2)-2r.n+2n^(2)) then

The value of sum_(r=0)^(2n)(-1)^(r)*(""^(2n)C_(r))^(2) is equal to :