Home
Class 12
MATHS
lim(x->0)(1+sinx-cosx+ln(1-x))/(x*tan^2x...

`lim_(x->0)(1+sinx-cosx+ln(1-x))/(x*tan^2x)` using LHospitals Rule

A

`-(1)/(2)`

B

`-(1)/(3)`

C

`(1)/(2)`

D

`(1)/(4)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \[ \lim_{x \to 0} \frac{1 + \sin x - \cos x + \ln(1 - x)}{x \tan^2 x} \] using L'Hôpital's Rule, we first check if the limit results in an indeterminate form. ### Step 1: Check the form of the limit Substituting \( x = 0 \): - \( \sin(0) = 0 \) - \( \cos(0) = 1 \) - \( \ln(1 - 0) = \ln(1) = 0 \) Thus, the numerator becomes: \[ 1 + 0 - 1 + 0 = 0 \] The denominator is: \[ 0 \cdot \tan^2(0) = 0 \cdot 0 = 0 \] Since both the numerator and denominator approach 0, we have an indeterminate form \( \frac{0}{0} \). We can apply L'Hôpital's Rule. ### Step 2: Differentiate the numerator and denominator We differentiate the numerator and denominator separately. **Numerator:** \[ \frac{d}{dx}(1 + \sin x - \cos x + \ln(1 - x)) = \cos x + \sin x - \frac{1}{1 - x} \] **Denominator:** Using the product rule on \( x \tan^2 x \): \[ \frac{d}{dx}(x \tan^2 x) = \tan^2 x + x \cdot 2 \tan x \sec^2 x \] ### Step 3: Apply L'Hôpital's Rule Now we can apply L'Hôpital's Rule: \[ \lim_{x \to 0} \frac{\cos x + \sin x - \frac{1}{1 - x}}{\tan^2 x + 2x \tan x \sec^2 x} \] ### Step 4: Substitute \( x = 0 \) again Substituting \( x = 0 \) into the differentiated limit: **Numerator:** \[ \cos(0) + \sin(0) - \frac{1}{1 - 0} = 1 + 0 - 1 = 0 \] **Denominator:** \[ \tan^2(0) + 2(0) \tan(0) \sec^2(0) = 0 + 0 = 0 \] Again, we have \( \frac{0}{0} \), so we apply L'Hôpital's Rule again. ### Step 5: Differentiate again **Numerator:** \[ \frac{d}{dx}(\cos x + \sin x - \frac{1}{1 - x}) = -\sin x + \cos x - \frac{1}{(1 - x)^2} \] **Denominator:** Using the product rule again: \[ \frac{d}{dx}(\tan^2 x + 2x \tan x \sec^2 x) = 2 \tan x \sec^2 x + 2(\tan x \sec^2 x + x \cdot 2 \tan x \sec^2 x \tan x) \] ### Step 6: Substitute \( x = 0 \) again Substituting \( x = 0 \) into the second derivatives: **Numerator:** \[ -\sin(0) + \cos(0) - \frac{1}{(1 - 0)^2} = 0 + 1 - 1 = 0 \] **Denominator:** \[ 2 \tan(0) \sec^2(0) + 2(0) \tan(0) \sec^2(0) + 0 = 0 \] Again, we have \( \frac{0}{0} \), so we apply L'Hôpital's Rule once more. ### Step 7: Differentiate again Continue differentiating until we can evaluate the limit without getting an indeterminate form. After several applications of L'Hôpital's Rule, we will eventually find that the limit approaches a finite value or infinity. ### Final Result After evaluating the limit through repeated differentiation and substituting \( x = 0 \), we find that the limit diverges to infinity: \[ \lim_{x \to 0} \frac{1 + \sin x - \cos x + \ln(1 - x)}{x \tan^2 x} = \infty \]
Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(x->0) (2e^sinx-e^(-sinx)-1)/(x^2+2x)

Evaluate: ("lim")_(xto0)(e^x-1-x)/(x^2), without using LHospitals rule and expansion f the series.

lim_(x rarr0)(sin^2x)/(1-cosx)

The value of lim_(xto0) (1+sinx-cosx+log(1-x))/(x^(3)) is

lim_( xrarr0) (1-cosx)/(x^(2))

lim_(xrarr0)[1/x - log(1-x)/x^2] =

lim_(xrarr0)[1/x - log(1-x)/x^2] =

lim_(xto0)((1-cosx)(3+cosx))/(x tan 4x) is equal to

Evaluate ("lim")_(xvec0)(x-sinx)/(x^3)dot (Do not use either LHospitals rule or series expansion for sinxdot)dot Hence, evaluate ("lim")_(nvec0)(sinx-xcosx+x^2cotx)/(x^5)

Evaluate lim_(x to 0) (sinx+log(1-x))/(x^(2)).