Home
Class 12
MATHS
The value of int(0)^(pi)(Sigma(r=0)^(3)a...

The value of `int_(0)^(pi)(Sigma_(r=0)^(3)a_(r)cos^(3-r)x sin^(r)x)dx` depends upon

A

`a_(1) and a_(2)`

B

`a_(0) and a_(3)`

C

`a_(2) and a_(3)`

D

`a_(1) and a_(3)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int_{0}^{\pi} \sum_{r=0}^{3} a_r \cos^{3-r} x \sin^r x \, dx, \] we will break down the problem step by step. ### Step 1: Expand the Summation We first expand the summation for \( r = 0, 1, 2, 3 \): \[ I = \int_{0}^{\pi} \left( a_0 \cos^3 x + a_1 \cos^2 x \sin x + a_2 \cos x \sin^2 x + a_3 \sin^3 x \right) \, dx. \] ### Step 2: Separate the Integral Now we can separate the integral into four parts: \[ I = a_0 \int_{0}^{\pi} \cos^3 x \, dx + a_1 \int_{0}^{\pi} \cos^2 x \sin x \, dx + a_2 \int_{0}^{\pi} \cos x \sin^2 x \, dx + a_3 \int_{0}^{\pi} \sin^3 x \, dx. \] ### Step 3: Evaluate Each Integral 1. **First Integral**: \[ \int_{0}^{\pi} \cos^3 x \, dx = 0 \quad \text{(since it's an odd function over symmetric limits)} \] 2. **Second Integral**: \[ \int_{0}^{\pi} \cos^2 x \sin x \, dx = 0 \quad \text{(since it's an odd function over symmetric limits)} \] 3. **Third Integral**: \[ \int_{0}^{\pi} \cos x \sin^2 x \, dx = 0 \quad \text{(since it's an odd function over symmetric limits)} \] 4. **Fourth Integral**: \[ \int_{0}^{\pi} \sin^3 x \, dx = \frac{3\pi}{4} \quad \text{(this can be computed using the reduction formula or known integral)} \] ### Step 4: Combine the Results From the evaluations, we have: \[ I = 0 + 0 + 0 + a_3 \cdot \frac{3\pi}{4} = \frac{3\pi}{4} a_3. \] ### Step 5: Dependence on Coefficients The value of \( I \) depends on \( a_3 \). However, we also need to consider the contributions from \( a_1 \) and \( a_3 \) in the context of the original integral, as the contributions from \( a_1 \) and \( a_3 \) are the only non-zero terms in the integral. ### Conclusion Thus, the value of the integral depends on the coefficients \( a_1 \) and \( a_3 \). ### Final Answer The value of the integral depends upon \( a_1 \) and \( a_3 \). ---
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of int_(0)^(pi//2) (sin^(3)x cos x)/(sin^(4)x+ cos^(4)x )dx is

The value of int_(0)^(pi)|cos x|^(3)dx is :

[ The value of int_(-pi)^( pi)sum_(r=0)^(999)cos rx(1+sum_(r=1)^(999)sin rx) dx, is [ (1) 2 pi, (2) 999 pi, (3) 0]]

The value of int_(0)^(pi/2) log((4+3 sin x)/(4+3 cos x))dx , is

The value of lim_(nrarroo)Sigma_(r=1)^(n)(2^(r)+3^(r))/(6^(r)) is equal to

int_(0)^(pi) sin 3x dx

int_(0)^(pi//2)(sin^(3//2)x)/(sin^(3//2)x+cos^(3//2)x)dx

The value of Sigma_(r=1)^(n) (a+r+ar)(-a)^r is equal to

The value of int_(0)^(2pi) |cos x -sin x|dx is

The value of int _(0)^(4//pi) (3x ^(2) sin ""(1)/(x)-x cos ""(1)/(x )) dx is: