Home
Class 12
MATHS
Solve the equation: tan^(-1)sqrt(x^2+x)+...

Solve the equation: `tan^(-1)sqrt(x^2+x)+sin^(-1)sqrt(x^2+x+1)=pi/2`

A

`-1,0`

B

`0, 1`

C

`-1, 1`

D

`-1, 2`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

The sum of the solution of the equation 2sin^(-1)sqrt(x^2+x+1)+cos^(-1)sqrt(x^2+x)=(3pi)/2 is 0 (b) -1 (c) 1 (d) 2

The number of real solution(s) of the equation sin^(-1)sqrt(x^(2)-x+1)+cos^(-1)sqrt(x^(2)-x)=pi is/are

The number of real solutions of tan^(-1)sqrt(x(x+1))+sin^(-1)sqrt(x^2+x+1)=pi/2 is a. zero b . one c . two d . infinite

The number of real solutions of tan^(-1)sqrt(x(x+1))+sin^(-1)sqrt(x^2+x+1)=pi/2 is a. z ero b. one c. two d. infinite

The number of solutions for the equation sin^(-1) sqrt((x^(2)-x+1))+cos^(-1)sqrt((x^(2)-x))=pi is :

Solve the equation sin^(-1)x+sin^(-1)6sqrt(3)x=(-pi)/2dot

If f(x)=tan^(-1)sqrt(x^(2)+4x) +sin^(-1)sqrt(x^(2)+4x+1)

Solve the equation: x^2+x+1/(sqrt(2))= 0

Solve the equation sin^(-1)6 x+sin^(-1)6sqrt(3)x=(-pi)/2dot

Solve the equation sin^(-1)6 x+sin^(-1)6sqrt(3)x=(-pi)/2dot