Home
Class 12
MATHS
The expression ( 1+ "tan" x + "tan"^(2) ...

The expression `( 1+ "tan" x + "tan"^(2) x) (1-"cot" x + "cot"^(2) x)` has the positive values of x, given by

A

`[0, (pi)/(2)]`

B

`[0,pi]`

C

`R-{x=(npi)/(2), n in I}`

D

`[0, oo]`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

The expression (1 + tan x + tan^2 x)(1-cot x + cot^2 x) has the positive values for x, given by

If tan(cos^(-1) x) = sin (cot^(-1).(1)/(2)) , then find the value of x

tan(cot^(-1)x) is equal to

tan(cot^(-1)x) is equal to

Draw the graph of y=tan (tan^(-1)x) or y = cot (cot^(-1) x)

The domain set of the function f(x) = tan^(-1) x -cot ^(-1) x + cos ^(-1) ( 2-x) is

If tan^-1(1/y)=-pi+cot^-1 y, where y=x^2-3x+2, then find the value of x

If tan^(-1) x =pi/10 for some "x"in R , then the value of cot^(-1) x is

Prove that : 2 tan^(-1) (cosec tan^(-1) x - tan cot^(-1) x) = tan^(-1) x

int\ (tan^(-1)x - cot^(-1)x)/(tan^(-1)x + cot^(-1)x) \ dx equals