Home
Class 12
MATHS
If cos x-sinx=-(5)/(4), where (pi)/(2)lt...

If `cos x-sinx=-(5)/(4)`, where `(pi)/(2)ltx lt(3pi)/(4)`, then `cot((x)/(2))` is equal to

A

`(4-sqrt7)/(9)`

B

8

C

`-8`

D

`(4+sqrt7)/(9)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \cos x - \sin x = -\frac{5}{4} \) for \( x \) in the interval \( \left( \frac{\pi}{2}, \frac{3\pi}{4} \right) \) and find \( \cot\left(\frac{x}{2}\right) \), we can follow these steps: ### Step 1: Square both sides of the equation Starting with the equation: \[ \cos x - \sin x = -\frac{5}{4} \] Square both sides: \[ (\cos x - \sin x)^2 = \left(-\frac{5}{4}\right)^2 \] This simplifies to: \[ \cos^2 x - 2\cos x \sin x + \sin^2 x = \frac{25}{16} \] ### Step 2: Use the Pythagorean identity Using the identity \( \cos^2 x + \sin^2 x = 1 \): \[ 1 - 2\cos x \sin x = \frac{25}{16} \] Rearranging gives: \[ -2\cos x \sin x = \frac{25}{16} - 1 \] \[ -2\cos x \sin x = \frac{25}{16} - \frac{16}{16} = \frac{9}{16} \] Thus, \[ 2\cos x \sin x = -\frac{9}{16} \] ### Step 3: Express \( \cos x + \sin x \) Now, we need to find \( \cos x + \sin x \). We can use the identity: \[ (\cos x + \sin x)^2 = \cos^2 x + \sin^2 x + 2\cos x \sin x \] Substituting the known values: \[ (\cos x + \sin x)^2 = 1 + 2\left(-\frac{9}{32}\right) \] Calculating gives: \[ (\cos x + \sin x)^2 = 1 - \frac{9}{16} = \frac{16}{16} - \frac{9}{16} = \frac{7}{16} \] Thus, \[ \cos x + \sin x = \pm \sqrt{\frac{7}{16}} = \pm \frac{\sqrt{7}}{4} \] ### Step 4: Determine the sign of \( \cos x + \sin x \) Since \( x \) is in the interval \( \left( \frac{\pi}{2}, \frac{3\pi}{4} \right) \), both \( \cos x \) and \( \sin x \) are positive. Therefore, we take the positive root: \[ \cos x + \sin x = \frac{\sqrt{7}}{4} \] ### Step 5: Solve for \( \cot\left(\frac{x}{2}\right) \) We know: \[ \cot\left(\frac{x}{2}\right) = \frac{1 + \cos x}{\sin x} \] We have \( \cos x \) from earlier, so we need to find \( \sin x \): Using the equation \( \cos x - \sin x = -\frac{5}{4} \), we can express \( \sin x \): \[ \sin x = \cos x + \frac{5}{4} \] Substituting \( \cos x \): \[ \sin x = \frac{\sqrt{7}}{4} + \frac{5}{4} = \frac{\sqrt{7} + 5}{4} \] Now substituting back into the cotangent formula: \[ \cot\left(\frac{x}{2}\right) = \frac{1 + \cos x}{\sin x} = \frac{1 + \frac{\sqrt{7}}{4}}{\frac{\sqrt{7} + 5}{4}} = \frac{\frac{4 + \sqrt{7}}{4}}{\frac{\sqrt{7} + 5}{4}} = \frac{4 + \sqrt{7}}{\sqrt{7} + 5} \] ### Final Result Thus, the value of \( \cot\left(\frac{x}{2}\right) \) is: \[ \cot\left(\frac{x}{2}\right) = \frac{4 + \sqrt{7}}{\sqrt{7} + 5} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If (pi)/(2)lt alpha lt (3pi)/(4) , then sqrt(2tan alpha+(1)/(cos^(2)alpha)) is equal to

If cos x + sin x = a , (- (pi)/(2) lt x lt - (pi)/(4)) , then cos 2 x is equal to

If tan x= (3)/(4) " where " pi lt x lt (3pi)/( 2), value of tan ""(x)/(2) is

If sinx +cosx=(sqrt7)/(2) , where x in [0, (pi)/(4)], then the value of tan.(x)/(2) is equal to

If f(x)=(2-3cosx)/(sinx) , then f'((pi)/(4)) is equal to

Lt_(x to pi)(sinx)/(x-pi) is equal to

Lt_(x to (pi)/(2))(2x-pi)/(cos x) is equal to

If sec x cos 5x=-1 and 0 lt x lt (pi)/(4) , then x is equal to

Express sin^(-1)((sin x+ cos x)/(sqrt2)) , where -(pi)/(4) lt x lt (pi)/(4) , in the simplest form.

If sinx+cosx=sqrt7/2 where x in[0,pi/4] then tan(x/2) is equal to