Home
Class 12
MATHS
The value of lim(xrarroo)((lnx)^(2))/(2+...

The value of `lim_(xrarroo)((lnx)^(2))/(2+3x^(2))` is equal to

A

`(1)/(3)`

B

`(2)/(3)`

C

1

D

0

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of lim_(xrarroo) (sinx)/(x) , is

The value of lim_(xrarr0)(sin^(2)3x)/(sqrt(3+secx-2)) is equal to

lim_(xrarr oo)((x^2+4x-3)/(x^2-2x+5))^x is equal to

The value of lim_(xrarroo)[(e)/((1+(1)/(x))^(x))]^(x) is equal to

The value of lim_(xrarroo) ((x^2+6)/(x^2-6))^(x) is given by

The value of lim_(xrarroo) x^(1//x) equals

The value of lim_(xrarroo) x^(2)(1-cos.(1)/(x)) is

lim_(xrarroo) ((x+2)/(x+1))^(x+3) is equal to

The value of lim_(xrarroo) ((x+3)/(x-1))^(x+1) is

The value of : lim_(xrarroo)("log" x)/(x) is: