Home
Class 12
MATHS
The value of lim(nrarroo)Sigma(r=1)^(n)(...

The value of `lim_(nrarroo)Sigma_(r=1)^(n)((2r)/(n^(2)))e^((r^(2))/(n^(2)))` is equal to

A

e

B

2e

C

`e-2`

D

`e-1`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \[ \lim_{n \to \infty} \sum_{r=1}^{n} \frac{2r}{n^2} e^{\frac{r^2}{n^2}}, \] we can convert the summation into an integral. Here’s the step-by-step solution: ### Step 1: Rewrite the Summation We start with the expression: \[ \sum_{r=1}^{n} \frac{2r}{n^2} e^{\frac{r^2}{n^2}}. \] We can factor out \(\frac{1}{n^2}\): \[ \frac{1}{n^2} \sum_{r=1}^{n} 2r e^{\frac{r^2}{n^2}}. \] ### Step 2: Change of Variable Next, we introduce a change of variable. Let \(x = \frac{r}{n}\). Then, as \(r\) goes from \(1\) to \(n\), \(x\) goes from \(\frac{1}{n}\) to \(1\). The increment \(dr\) can be expressed as \(n \, dx\). Thus, we rewrite the summation: \[ \sum_{r=1}^{n} 2r e^{\frac{r^2}{n^2}} = \sum_{r=1}^{n} 2(n x) e^{(n^2 x^2)/n^2} = 2n \sum_{r=1}^{n} x e^{x^2}. \] ### Step 3: Convert to Integral Now, we can express the sum as an integral in the limit as \(n \to \infty\): \[ \lim_{n \to \infty} \frac{1}{n^2} \cdot 2n \sum_{r=1}^{n} x e^{x^2} \cdot n \, dx \approx \int_0^1 2x e^{x^2} \, dx. \] ### Step 4: Evaluate the Integral Now we need to evaluate the integral: \[ \int_0^1 2x e^{x^2} \, dx. \] Using the substitution \(u = x^2\), we have \(du = 2x \, dx\). Changing the limits accordingly, when \(x = 0\), \(u = 0\) and when \(x = 1\), \(u = 1\): \[ \int_0^1 e^{x^2} \, dx = \int_0^1 e^u \, du = e^1 - e^0 = e - 1. \] ### Final Result Thus, the value of the limit is: \[ \lim_{n \to \infty} \sum_{r=1}^{n} \frac{2r}{n^2} e^{\frac{r^2}{n^2}} = e - 1. \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If Sigma_(r=1)^(n)t_(r)=(1)/(6)n(n+1)(n+2), AA n ge 1, then the value of lim_(nrarroo)Sigma_(r=1)^(n)(1)/(t_(r)) is equal to

The value of lim_(nrarroo)Sigma_(r=1)^(n)(2^(r)+3^(r))/(6^(r)) is equal to

The value of I=lim_(nrarroo)Sigma_(r=1)^(n)(r)/(n^(2)+n+r) is equal to

The value of lim_(nrarroo)(1^(2)-2^(2)+3^(2)-4^(2)+5^(2)….+(2n+1)^(2))/(n^(2)) is equal to

The value of lim_(n rarroo) sum_(r=1)^(n)(1)/(sin{((n+r)pi)/(4n)}).(pi)/(n) is equal to

The limit L=lim_(nrarroo)Sigma_(r=1)^(n)(n)/(n^(2)+r^(2)) satisfies

lim_(nrarroo) sum_(r=0)^(n-1) (1)/(sqrt(n^(2)-r^(2)))

If lim_(nrarroo)Sigma_(r=1)^(2n)(3r^(2))/(n^(3))e^((r^(3))/(n^(3)))=e^(a)-e^(b) , then a+b is equal to

The value of lim_(xrarr2)Sigma_(r=1)^(7)(x^(r )-2^(r ))/(2r(x-2)) is equal to

The value of lim_(n to oo) sum_(r=1)^(n)(r^(2))/(r^(3)+n^(3)) is -