Home
Class 12
MATHS
The value of int(0)^((pi)/(2))(cos 2x co...

The value of `int_(0)^((pi)/(2))(cos 2x cos 2^(2)x cos 2^(3)x cos 2^(4)x)dx` is equal to

A

0

B

`(1)/(2)`

C

`(pi)/(2)`

D

`(pi)/(4)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int_{0}^{\frac{\pi}{2}} \cos(2x) \cos(2^2 x) \cos(2^3 x) \cos(2^4 x) \, dx, \] we can use the property of definite integrals that states: \[ \int_{a}^{b} f(x) \, dx = \int_{a}^{b} f(a + b - x) \, dx. \] In our case, \( a = 0 \) and \( b = \frac{\pi}{2} \), so we have: \[ I = \int_{0}^{\frac{\pi}{2}} \cos(2(\frac{\pi}{2} - x)) \cos(2^2(\frac{\pi}{2} - x)) \cos(2^3(\frac{\pi}{2} - x)) \cos(2^4(\frac{\pi}{2} - x)) \, dx. \] Now, we compute each cosine term: 1. For \( \cos(2(\frac{\pi}{2} - x)) = \cos(\pi - 2x) = -\cos(2x) \). 2. For \( \cos(2^2(\frac{\pi}{2} - x)) = \cos(2^2(\frac{\pi}{2} - x)) = \cos(2^2 \cdot \frac{\pi}{2} - 2^2 x) = \cos(2^2 \cdot \frac{\pi}{2} - 4x) = \cos(2^2 \cdot \frac{\pi}{2}) \cos(4x) + \sin(2^2 \cdot \frac{\pi}{2}) \sin(4x) = 0 \cdot \cos(4x) + 1 \cdot \sin(4x) = \sin(4x) \). 3. For \( \cos(2^3(\frac{\pi}{2} - x)) = \cos(2^3 \cdot \frac{\pi}{2} - 8x) = \cos(2^3 \cdot \frac{\pi}{2}) \cos(8x) + \sin(2^3 \cdot \frac{\pi}{2}) \sin(8x) = 0 \cdot \cos(8x) + 1 \cdot \sin(8x) = \sin(8x) \). 4. For \( \cos(2^4(\frac{\pi}{2} - x)) = \cos(2^4 \cdot \frac{\pi}{2} - 16x) = \cos(2^4 \cdot \frac{\pi}{2}) \cos(16x) + \sin(2^4 \cdot \frac{\pi}{2}) \sin(16x) = 0 \cdot \cos(16x) + 1 \cdot \sin(16x) = \sin(16x) \). Putting it all together, we have: \[ I = \int_{0}^{\frac{\pi}{2}} (-\cos(2x)) \sin(4x) \sin(8x) \sin(16x) \, dx. \] Now we can add the two expressions for \( I \): \[ 2I = \int_{0}^{\frac{\pi}{2}} \cos(2x) \cos(2^2 x) \cos(2^3 x) \cos(2^4 x) \, dx + \int_{0}^{\frac{\pi}{2}} (-\cos(2x)) \sin(4x) \sin(8x) \sin(16x) \, dx. \] Since the two integrals are equal in magnitude but opposite in sign, we have: \[ 2I = 0 \implies I = 0. \] Thus, the value of the integral is \[ \boxed{0}. \]
Promotional Banner

Similar Questions

Explore conceptually related problems

int_(0)^(pi/2) cos 2x dx

int_(0)^(pi//2) cos 3x dx

int_(0)^((pi)/(2))(dx)/(2+cos x)

The value of int_(0)^(2pi)cos^(5)x dx , is

int_(0)^(pi/2) cos^(2) x dx

The value of int_(0)^(pi//2) (cos3x+1)/(2 cos x-1) dx is

The value of int_(0)^(2pi) cos^(99)x dx , is

The value of int_(0)^(2pi) |cos x -sin x|dx is

If int_(0)^(pi)((x)/(1+sinx))^(2) dx=A, then the value for int_(0)^(pi)(2x^(2). cos^(2)x//2)/((1+ sin x^(2)))dx is equal to

The value of int_(0)^(pi//2) (sin^(3)x cos x)/(sin^(4)x+ cos^(4)x )dx is