Home
Class 12
MATHS
Let (vecp xx vecq) xx vecp +(vecp.vecq)v...

Let `(vecp xx vecq) xx vecp +(vecp.vecq)vecq``=(x^(2)+y^(2))vecq + (14-4x-6y)vecp`
Where `vecp` and `vecq` are two non-collinear vectors, `vecp` is unit vector and x,y are scalars. Then the value of `(x+y)` is

A

10

B

11

C

12

D

13

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

If vecpxxvecq=vecr and vecp.vecq=c , then vecq is

if vecP +vecQ = vecP -vecQ , then

Two vectors vecP and vecQ that are perpendicular to each other if :

If vecP = (vecbxxvecc)/([vecavecbvecc]).vecq=(veccxxveca)/([veca vecb vecc])and vecr = (vecaxxvecb)/([veca vecbvecc]), " where " veca,vecb and vecc are three non- coplanar vectors then the value of the expression (veca + vecb + vecc ). (vecq+ vecq+vecr) is

If vecp = (vecbxxvecc)/([vecavecbvecc]), vecq=(veccxxveca)/([veca vecb vecc])and vecr = (vecaxxvecb)/([veca vecbvecc]), " where " veca,vecb and vecc are three non- coplanar vectors then the value of the expression (veca + vecb + vecc ). (vecp+ vecq+vecr) is (a)3 (b)2 (c)1 (d)0

If vectors 4vecp+vecq, 2 vecp-3vecq and 5vecp-3vecq, 5vecp+3vecq are a pair of mutually perpendicular vectors and if the angle between vecp and vecq is theta , then the value of sin^(2)theta is equal to

If the vectors 3vecP+vecq, 5vecP - 3vecq and 2 vecp+ vecq, 4 vecp - 2vecq are pairs of mutually perpendicular vectors, the find the angle between vectors vecp and vecq .

Find the angle between two vectors vecp and vecq are 4,3 with respectively and when vecp.vecq =5 .

vecP is resultant of vecA and vecB. vecQ is resultant of vecA and -vecB , the value of absP^2 + absQ^2 would be

The resultant of vecP and vecQ is perpendicular to vecP . What is the angle between vecP and vecQ