Home
Class 12
MATHS
If f(x)={{:((1+|sinx|)^((p)/(|sinx|)),",...

If `f(x)={{:((1+|sinx|)^((p)/(|sinx|)),",",-(pi)/(6)ltxlt0),(q,":",x=0),(e^(tan3x.cot5x),":",0ltxlt(pi)/(6)):}` is continuous at x = 0, then the value of `2p+10lnq` is equal to

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to ensure the function \( f(x) \) is continuous at \( x = 0 \). This means that the left-hand limit as \( x \) approaches 0 from the left must equal the right-hand limit as \( x \) approaches 0 from the right, and both must equal \( f(0) \). 1. **Define the function**: \[ f(x) = \begin{cases} \frac{(1 + |\sin x|)^p}{|\sin x|} & \text{for } -\frac{\pi}{6} < x < 0 \\ q & \text{for } x = 0 \\ e^{\tan(3x) \cot(5x)} & \text{for } 0 < x < \frac{\pi}{6} \end{cases} \] 2. **Calculate the right-hand limit as \( x \to 0^+ \)**: \[ \lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} e^{\tan(3x) \cot(5x)} \] We know that \( \tan(3x) \approx 3x \) and \( \cot(5x) \approx \frac{1}{5x} \) as \( x \to 0 \). Thus, \[ \tan(3x) \cot(5x) \approx 3x \cdot \frac{1}{5x} = \frac{3}{5} \] Therefore, \[ \lim_{x \to 0^+} f(x) = e^{\frac{3}{5}} \] 3. **Calculate the left-hand limit as \( x \to 0^- \)**: \[ \lim_{x \to 0^-} f(x) = \lim_{x \to 0^-} \frac{(1 + |\sin x|)^p}{|\sin x|} = \lim_{x \to 0^-} \frac{(1 + \sin x)^p}{-\sin x} \] As \( x \to 0 \), \( \sin x \to 0 \), and we can use the expansion \( \sin x \approx x \): \[ \lim_{x \to 0^-} \frac{(1 + \sin x)^p}{-\sin x} = \lim_{x \to 0^-} \frac{(1 + x)^p}{-x} \] This limit is of the form \( \frac{0}{0} \), so we can apply L'Hôpital's Rule: \[ = \lim_{x \to 0^-} \frac{p(1 + x)^{p-1}}{-1} = -p \] 4. **Set the limits equal**: Since the function is continuous at \( x = 0 \), we have: \[ q = e^{\frac{3}{5}} \quad \text{and} \quad -p = e^{\frac{3}{5}} \] Thus, we find: \[ p = -\frac{3}{5} \] 5. **Calculate \( 2p + 10 \ln q \)**: First, substitute \( p \) and \( q \): \[ 2p + 10 \ln q = 2\left(-\frac{3}{5}\right) + 10 \ln\left(e^{\frac{3}{5}}\right) \] Simplifying: \[ = -\frac{6}{5} + 10 \cdot \frac{3}{5} = -\frac{6}{5} + 6 = \frac{24}{5} \] 6. **Final answer**: \[ 2p + 10 \ln q = \frac{24}{5} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x) = {{:({1 + |sin x|}^(a//|sin x|)",",-pi//6 lt x lt 0),(b",",x = 0),(e^(tan 2x//tan 3x)",",0 lt x lt pi//6):} Determine a and b such that f(x) is continuous at x = 0

If f(x)={(-4sinx+cosx, "for",xle-(pi)/2),(a sin x+b,"for",-(pi)/2ltxlt(pi)/2),(cosx+2,"for",xge(pi)/2):} is continuous, then

The function f(x)=((3^x-1)^2)/(sinx*ln(1+x)), x != 0, is continuous at x=0, Then the value of f(0) is

Let f(0,pi) to R be defined as f(x)={{:(,(1-sinx)/((pi-2x)^(2)).(In sin x)/((In(1+pi^(2)-4pix+4x^(2)))),x ne (pi)/(2)),(,k,x=(pi)/(2)):} If a continuous at x=(pi)/(2) , then the value of 8sqrt|k|,is

For 0ltxlt(pi)/(2) ,prove that x gt sin x

If f(x)={((1+|cosx|)^(p/(|cos x|)), , 0 lt x lt (pi)/2),(q, , x=(pi)/2),(e^([cotl(x-(pi)/2)//cot m (x- (pi)/2)]), , (pi)/2 lt x lt pi):} is a continuous function on (0,pi) then the value of p and q are respectively?

If the function f(x) =(tan(tanx)-sin(sinx))/(tanx-sinx) (x !=0) : is continuous at x=0 ,then find the value of f (0)

If 0ltxlt(pi)/(2) , then the minimum value of (sinx+cosx+cosec2x) ,is

If f(x)=((1-tanx)/(1+sinx))^(cosec x) is to be made continuous at x=0, then f(0) must be equal to

If f(x)={sin^(-1)(sinx),xgt0 (pi)/(2),x=0,then cos^(-1)(cosx),xlt0