Home
Class 12
MATHS
int(sin^2x*sec^2x+2tanx*sin^(- 1)x*sqrt(...

`int(sin^2x*sec^2x+2tanx*sin^(- 1)x*sqrt(1-x^2))/(sqrt(1-x^2)(1+tan^2x))dx`

A

`(sin^(-1)x)(cos^2x)+C`

B

`(sin^(-1)x)(sin^2x)+C`

C

`(cos^(-1)x)(sin^2x)+C`

D

`-sin^(-1)x(sin^2x)+C`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ \int \frac{\sin^2 x \sec^2 x + 2 \tan x \sin^{-1} x \sqrt{1 - x^2}}{\sqrt{1 - x^2} (1 + \tan^2 x)} \, dx, \] we can break it down step by step. ### Step 1: Rewrite the integral First, we can separate the terms in the integral: \[ \int \left( \frac{\sin^2 x \sec^2 x}{\sqrt{1 - x^2} (1 + \tan^2 x)} + \frac{2 \tan x \sin^{-1} x \sqrt{1 - x^2}}{\sqrt{1 - x^2} (1 + \tan^2 x)} \right) \, dx. \] ### Step 2: Simplify the first term Recall that \( \sec^2 x = 1 + \tan^2 x \). Therefore, we can rewrite the first term: \[ \frac{\sin^2 x \sec^2 x}{\sqrt{1 - x^2} (1 + \tan^2 x)} = \frac{\sin^2 x (1 + \tan^2 x)}{\sqrt{1 - x^2} (1 + \tan^2 x)} = \frac{\sin^2 x}{\sqrt{1 - x^2}}. \] ### Step 3: Simplify the second term Now, simplify the second term: \[ \frac{2 \tan x \sin^{-1} x \sqrt{1 - x^2}}{\sqrt{1 - x^2} (1 + \tan^2 x)} = \frac{2 \tan x \sin^{-1} x}{1 + \tan^2 x}. \] ### Step 4: Combine the terms Now, we can combine the two simplified terms: \[ \int \left( \frac{\sin^2 x}{\sqrt{1 - x^2}} + \frac{2 \tan x \sin^{-1} x}{1 + \tan^2 x} \right) \, dx. \] ### Step 5: Rewrite \(\tan x\) and \(1 + \tan^2 x\) We know that \( \tan x = \frac{\sin x}{\cos x} \) and \( 1 + \tan^2 x = \frac{1}{\cos^2 x} \). Thus, we can rewrite: \[ \frac{2 \tan x \sin^{-1} x}{1 + \tan^2 x} = 2 \sin x \sin^{-1} x \cos x. \] ### Step 6: Final integration Now we have: \[ \int \left( \frac{\sin^2 x}{\sqrt{1 - x^2}} + 2 \sin x \sin^{-1} x \cos x \right) \, dx. \] The first term can be recognized as part of the derivative of \( \sin^2 x \sin^{-1} x \). ### Step 7: Differentiate to confirm To confirm, we differentiate \( \sin^2 x \sin^{-1} x \): \[ \frac{d}{dx} (\sin^2 x \sin^{-1} x) = \sin^2 x \cdot \frac{1}{\sqrt{1 - x^2}} + 2 \sin x \cos x \sin^{-1} x. \] This matches our integral, confirming that: \[ \int \left( \frac{\sin^2 x}{\sqrt{1 - x^2}} + 2 \sin x \sin^{-1} x \cos x \right) \, dx = \sin^2 x \sin^{-1} x + C. \] ### Final Answer Thus, the final result is: \[ \sin^2 x \sin^{-1} x + C. \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If tan(sin^(-1)sqrt(1-x^2))=sin(tan^(-1)2) then x is

int(e^x[1+sqrt(1-x^2)sin^-1x])/sqrt(1-x^2)dx

int(sqrt(1-x^(2))-x)/(sqrt(1-x^(2))(1+xsqrt(1-x^(2))))dx is

int(dx)/(sqrt(1-x^(2))(sin^(-1)x)^(2))

int_((x sin^(-1)x)/(sqrt(1-x)^(2)))dx

int(2x-1)/(sqrt(x^(2)-x-1))dx

int_(0)^(1//2) (x sin^(-1)x)/(sqrt(1-x^(2)))dx=?

int(1)/((1+x^(2))sqrt(tan^(-1)x))dx=?

f(x)=sqrt(1-sin^(2)x)+sqrt(1+tan^(2)x) then

int(sec^2xcos^-1x-tanx/sqrt(1-x^2))dx