Home
Class 12
MATHS
The value of {:(lim),(xrarr0):}(xcot(4x)...

The value of `{:(lim),(xrarr0):}(xcot(4x))/(tan^2(3x)cot^2(6x))` is equal to

A

0

B

4

C

`2/9`

D

1

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(xto0) (xcot(4x))/(sin^2x cot^2(2x)) is equal to

lim_(xrarr0) (tan 4x)/(tan 2x)

The value of lim_(xrarr0) (|x|)/(x) , is

The value of lim_(xrarr-oo)(x^(2)tan((1)/(x)))/(sqrt(4x^(2)-x+1)) is equal to

The value of lim_(xrarr0) (e^x-(x+x))/(x^2) ,is

The value of lim_(xrarr0)(9ln (2-cos 25x))/(5ln^(2)(sin 3x+1)) is equal to

lim_(xrarr0)(sin(x)/(4))/(x)

The value of lim_(xrarr0)(e^(x)-cos2x-x)/(x^2) , is

The value of lim_(xrarr0) (a^x-b^x)/(x) ,is

The value of lim_(xrarr0)((4^x-1)^3)/(sin.(x^2)/(4)log(1+3x)) ,is