Home
Class 12
MATHS
Let A is a matrix of order 3xx3 defined ...

Let A is a matrix of order `3xx3` defined as `A=[a_(ij)]3xx3,` where `a_(ij)={:(lim),(xrarr0):}(1-cos(ix))/(sin(ix)tan(jx))(AA1lei,j,le3), " then " A^2` is equal to

A

A

B

`3/2A`

C

`2/3A`

D

`1/4A`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the square of the matrix \( A \) defined as: \[ A_{ij} = \lim_{x \to 0} \frac{1 - \cos(ix)}{\sin(ix) \tan(jx)} \] ### Step 1: Simplify the Limit Expression We start by simplifying the limit expression for \( A_{ij} \): \[ A_{ij} = \lim_{x \to 0} \frac{1 - \cos(ix)}{\sin(ix) \tan(jx)} \] Using the known limits: - \( \lim_{x \to 0} \frac{1 - \cos(x)}{x^2} = \frac{1}{2} \) - \( \lim_{x \to 0} \frac{\sin(x)}{x} = 1 \) - \( \lim_{x \to 0} \frac{\tan(x)}{x} = 1 \) We can rewrite the limit as follows: \[ A_{ij} = \lim_{x \to 0} \frac{1 - \cos(ix)}{(ix)^2} \cdot \frac{(ix)^2}{\sin(ix) \tan(jx)} \] ### Step 2: Substitute the Limits Substituting the limits, we have: \[ A_{ij} = \frac{1}{2} \cdot \frac{i^2 x^2}{(ix)(jx)} = \frac{1}{2} \cdot \frac{i^2}{ij} = \frac{i}{2j} \] ### Step 3: Construct the Matrix \( A \) Now we can construct the matrix \( A \): \[ A = \begin{bmatrix} \frac{1}{2 \cdot 1} & \frac{1}{2 \cdot 2} & \frac{1}{2 \cdot 3} \\ \frac{2}{2 \cdot 1} & \frac{2}{2 \cdot 2} & \frac{2}{2 \cdot 3} \\ \frac{3}{2 \cdot 1} & \frac{3}{2 \cdot 2} & \frac{3}{2 \cdot 3} \end{bmatrix} = \begin{bmatrix} \frac{1}{2} & \frac{1}{4} & \frac{1}{6} \\ 1 & \frac{1}{2} & \frac{1}{3} \\ \frac{3}{2} & \frac{3}{4} & \frac{1}{2} \end{bmatrix} \] ### Step 4: Calculate \( A^2 \) Now we will calculate \( A^2 = A \cdot A \): \[ A^2 = \begin{bmatrix} \frac{1}{2} & \frac{1}{4} & \frac{1}{6} \\ 1 & \frac{1}{2} & \frac{1}{3} \\ \frac{3}{2} & \frac{3}{4} & \frac{1}{2} \end{bmatrix} \cdot \begin{bmatrix} \frac{1}{2} & \frac{1}{4} & \frac{1}{6} \\ 1 & \frac{1}{2} & \frac{1}{3} \\ \frac{3}{2} & \frac{3}{4} & \frac{1}{2} \end{bmatrix} \] Calculating the elements of \( A^2 \): - First row, first column: \[ \frac{1}{2} \cdot \frac{1}{2} + \frac{1}{4} \cdot 1 + \frac{1}{6} \cdot \frac{3}{2} = \frac{1}{4} + \frac{1}{4} + \frac{1}{4} = \frac{3}{4} \] - First row, second column: \[ \frac{1}{2} \cdot \frac{1}{4} + \frac{1}{4} \cdot \frac{1}{2} + \frac{1}{6} \cdot \frac{3}{4} = \frac{1}{8} + \frac{1}{8} + \frac{1}{8} = \frac{3}{8} \] - Continuing this process for all elements, we find: \[ A^2 = \frac{3}{2} A \] ### Final Result Thus, the final result is: \[ A^2 = \frac{3}{2} A \]
Promotional Banner

Similar Questions

Explore conceptually related problems

Construct a matrix [a_(ij)]_(3xx3) , where a_(ij)=2i-3j .

Construct a matrix [a_(ij)]_(3xx3) ,where a_(ij)=(i-j)/(i+j).

construst a matrix of order 2 xx 2 whose elements are defined as a_(ij)=i+3j.

If is A is a matrix of order 3xx3 , then (A^(2))^(-1) is equal to…………….

Construct 3xx4 matrix A=[a_(aj)] whose elements are: a_(ij)=i.j

Construct 3xx4 matrix A=[a_(aj)] whose elements are: a_(ij)=i/j

Let A=[a_(ij)] be a square matrix of order 3 and B=[b_(ij)] be a matrix such that b_(ij)=2^(i-j)a_(ij) for 1lei,jle3, AA i,j in N . If the determinant of A is same as its order, then the value of |(B^(T))^(-1)| is

The square matrix A=[a_(ij)" given by "a_(ij)=(i-j)^3 , is a

If matrix A=[a_(ij)]_(2x2), where a_(ij)={{:(1"," , i ne j),(0",", i=j):} then A^(3) is equal to

Construct a 2xx3 matrix A = [a_ij], whose elements are given by a_(ij) ={{:(2i)/(3j):}}