Home
Class 12
MATHS
a,b,c,in N and d = |{:(a,b,c),(c,a,b),(b...

`a,b,c,in N and d = |{:(a,b,c),(c,a,b),(b,c,a):}|` , then the least positive value of d is

A

4

B

6

C

3

D

8

Text Solution

AI Generated Solution

The correct Answer is:
To find the least positive value of \( d \), where \( d = | \{ (a,b,c), (c,a,b), (b,c,a) \} | \) and \( a, b, c \in \mathbb{N} \), we will evaluate the determinant of the matrix formed by the permutations of \( a, b, c \). 1. **Set up the determinant**: \[ d = \begin{vmatrix} a & b & c \\ c & a & b \\ b & c & a \end{vmatrix} \] 2. **Calculate the determinant**: Using the determinant formula for a 3x3 matrix: \[ d = a \begin{vmatrix} a & b \\ c & a \end{vmatrix} - b \begin{vmatrix} c & b \\ b & a \end{vmatrix} + c \begin{vmatrix} c & a \\ b & c \end{vmatrix} \] Now, calculate each of the 2x2 determinants: - \( \begin{vmatrix} a & b \\ c & a \end{vmatrix} = a^2 - bc \) - \( \begin{vmatrix} c & b \\ b & a \end{vmatrix} = ca - b^2 \) - \( \begin{vmatrix} c & a \\ b & c \end{vmatrix} = c^2 - ab \) Substitute these back into the determinant: \[ d = a(a^2 - bc) - b(ca - b^2) + c(c^2 - ab) \] Expanding this gives: \[ d = a^3 - abc - bca + b^3 + c^3 - abc \] Combining like terms results in: \[ d = a^3 + b^3 + c^3 - 3abc \] 3. **Finding the least positive value of \( d \)**: We need to find the least positive value of \( d \) when \( a, b, c \) are natural numbers. - Start with the smallest values for \( a, b, c \). Let’s try \( a = 1, b = 1, c = 1 \): \[ d = 1^3 + 1^3 + 1^3 - 3 \cdot 1 \cdot 1 \cdot 1 = 3 - 3 = 0 \] (This is not positive.) - Next, try \( a = 1, b = 1, c = 2 \): \[ d = 1^3 + 1^3 + 2^3 - 3 \cdot 1 \cdot 1 \cdot 2 = 1 + 1 + 8 - 6 = 4 \] (This is positive.) - Check if we can get a smaller positive value by trying other combinations: - \( a = 1, b = 2, c = 2 \): \[ d = 1^3 + 2^3 + 2^3 - 3 \cdot 1 \cdot 2 \cdot 2 = 1 + 8 + 8 - 12 = 5 \] - \( a = 2, b = 2, c = 2 \): \[ d = 2^3 + 2^3 + 2^3 - 3 \cdot 2 \cdot 2 \cdot 2 = 8 + 8 + 8 - 24 = 0 \] The smallest positive value we found is \( d = 4 \). Thus, the least positive value of \( d \) is \( \boxed{4} \).
Promotional Banner

Similar Questions

Explore conceptually related problems

If a!=b!=c\ a n d\ |{:(a, b, c), (a^2,b^2,c^2), (b+c, c+a, a+b):}|=0 then a+b+c=0 b. a b+b c+c a=0 c. a^2+b^2+c^2=a b+b c+c a d. a b c=0

Let D_1=|[a, b, a+b], [c, d, c+d], [a, b, a-b]| and D_2=|[a, c, a+c], [b, d, b+d], [a, c, a+b+c]| then the value of |(D_1)/(D_2)| , where b!=0 and a d!=b c , is _____.

If |b+c c+a a+b a+b b+c c+a c+a a+b b+c|=k|ab c c a b b c a| , then value of k is 1 b. 2 c. 3 d. 4

If a+b+c+d = 24,a+b=c+d,a+c = 2(b+d) and a = b , what is the value of C?

If A={a,b},B={c,d},C={d,e} , then {(a,c),(a,d),(a,e),(b,c),(b,d),(b,e)} is equal to

If a ,b ,c are sides of a scalene triangle, then value of |[a, b, c] ,[b, c, a] ,[c, a, b]| is positive (b) negative non-positive (d) non-negative

Let R be a relation on NxxN defined by (a , b)\ R(c , d)hArra+d=b+c\ if\ (a , b),(c , d) in NxxN then show that: (i)\ (a , b)R\ (a , b)\ for\ a l l\ (a , b) in NxxN (ii)\ (a , b)R(c , d)=>(c , d)R(a , b)for\ a l l\ (a , b),\ (c , d) in NxxN (iii)\ (a , b)R\ (c , d)a n d\ (c , d)R(e ,f)=>(a , b)R(e ,f)\ for all \ (a , b),\ (c , d),\ (e ,f) in NxxN

Let D_1=|a b a+b c d c+d a b a-b|a n dD_2=|a c a+c b d b+d a c a+b+c| then the value of |(D_1)/(D_2)|,w h e r eb!=0a n da d!=b c , is _____.

Minimum value of (b+c)//a+(c+a)//b+(a+b)//c (for real positive numbers a ,b ,c) is (a) 1 (b) 2 (c) 4 (d) 6

If a, b, c are positive real numbers, then the least value of (a+b+c)((1)/(a)+(1)/(b)+(1)/( c )) , is