Home
Class 12
MATHS
Two points P and Q are lying on the curv...

Two points P and Q are lying on the curve `y=log_(2)(x+3)` in `xy` plane such that `vec (OP)` .`hat i=1` and ,`vec OQ*hat j=3` ,then the value of `|vec (OQ)-2vec (OP)|` is (where,"O" is the origin).

A

`sqrt(6)`

B

`sqrt(7)`

C

`sqrt(8)`

D

`sqrt(10)`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

Let P and Q are two points in the xy plane on the curve y = x^(11) - 2x^(7) + 7x^(3) + 11x + 6 such that vec(OP) cdot hati = 5, vec(OQ) cdot hati = -5 , then the magnitude of vec(OP) + vec(OQ) is

If vec a=3 hat i+4 hat j\ a n d\ vec b= hat i+ hat j+ hat k ,\ find the value of | vec axx vec b|dot

let vec a = 2hat i +3hat j and vec b = hat i +4hat j then find projection of vec a on vec b

If vec(P)=hat(i)+hat(j)-hat(k) and vec(Q)=hat(i)-hat(j)+hat(k) , then unit vector along (vec(P)-vec(Q)) is :

If vec a=3 hat i-2 hat j+ka n d vec b=2 hat i-4 hat j-3k , find | vec a-2 vec b|dot

If vec(a)= 3hat(i) + hat(j) + 2hat(k) and vec(b)= 2hat(i)-2hat(j) + 4hat(k) , then the magnitude of vec(b) xx vec(a) is

If vec(A)=-hat(i)+3hat(j)+2hat(k) and vec(B)=3hat(i)+2hat(j)+2hat(k) then find the value of vec(A) times vec(B) .

Find vec a +vec b if vec a = hat i - hat j and vec b =2 hat i

If vec a=x hat i+y hat j+z hat k , vec b=y hat i+z hat j+x hat k and vec c=z hat i+x hat j+y hat k , then vec axx( vec bxx vec c) is

If vec(a) = 2 hat(i) + hat(j) + 2hat(k) and vec(b) = 5hat(i)- 3 hat(j) + hat(k) , then the projection of vec(b) on vec(a) is