Home
Class 12
MATHS
The value of the integral I=int(0)^( pi/...

The value of the integral `I=int_(0)^( pi/4)[sin x+cos x](cos x-sin x)dx` is equal to (where,[.] denotes the greatest integer function)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_{0}^{\frac{\pi}{4}} (\sin x + \cos x)(\cos x - \sin x) \, dx \), we will follow these steps: ### Step 1: Expand the integrand We start by expanding the integrand: \[ I = \int_{0}^{\frac{\pi}{4}} (\sin x + \cos x)(\cos x - \sin x) \, dx \] Using the distributive property: \[ = \int_{0}^{\frac{\pi}{4}} (\sin x \cos x - \sin^2 x + \cos^2 x - \sin x \cos x) \, dx \] This simplifies to: \[ = \int_{0}^{\frac{\pi}{4}} (\cos^2 x - \sin^2 x) \, dx \] ### Step 2: Use the identity for cosine and sine Recall that \( \cos^2 x - \sin^2 x = \cos(2x) \). Thus, we can rewrite the integral: \[ I = \int_{0}^{\frac{\pi}{4}} \cos(2x) \, dx \] ### Step 3: Integrate The integral of \( \cos(2x) \) is: \[ \int \cos(2x) \, dx = \frac{1}{2} \sin(2x) + C \] Now, we evaluate the definite integral: \[ I = \left[ \frac{1}{2} \sin(2x) \right]_{0}^{\frac{\pi}{4}} \] ### Step 4: Evaluate the limits Calculating the limits: \[ = \frac{1}{2} \sin\left(2 \cdot \frac{\pi}{4}\right) - \frac{1}{2} \sin(0) \] \[ = \frac{1}{2} \sin\left(\frac{\pi}{2}\right) - 0 \] \[ = \frac{1}{2} \cdot 1 = \frac{1}{2} \] ### Step 5: Apply the greatest integer function The value of \( I \) is \( \frac{1}{2} \). The greatest integer function \( [I] \) is: \[ [I] = [\frac{1}{2}] = 0 \] ### Final Answer Thus, the value of the integral \( I \) is equal to: \[ \boxed{0} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of the integral int_(0)^(pi//2) |sin x-cos x|dx , is

int_(0)^(pi//2) ( sin x cos x )/( 1+ sin x ) dx is equal to

The value of int_(0)^(infty)[tan^(-1)x] dx is equal to (where ,[.] denotes the greatest integer function)

int_(0)^(pi//2) x sin x cos x dx

The value of int_-1^10 sgn (x -[x])dx is equal to (where, [:] denotes the greatest integer function

The value of int_(0)^(100)[ tan ^(-1)x] d x is equal to (where [.] denotes the greatest integer function)

the value of int_(0)^([x]) dx (where , [.] denotes the greatest integer function)

The value of int_0^([x]) 2^x/(2^([x])) dx is equal to (where, [.] denotes the greatest integer function)

Period of f(x) = sin 3x cos[3x]-cos 3x sin [3x] (where[] denotes the greatest integer function), is

The value of the integral I=int_(0)^(pi)[|sinx|+|cosx|]dx, (where [.] denotes the greatest integer function) is equal to